Publications by authors named "Neele Haacke"

Objective: Picalm (phosphatidylinositol-binding clathrin assembly protein), a ubiquitously expressed clathrin-adapter protein, is a well-known susceptibility gene for Alzheimer's disease, but its role in white adipose tissue (WAT) function has not yet been studied. Transcriptome analysis revealed differential expression of Picalm in WAT of diabetes-prone and diabetes-resistant mice, hence we aimed to investigate the potential link between Picalm expression and glucose homeostasis, obesity-related metabolic phenotypes, and its specific role in insulin-regulated GLUT4 trafficking in adipocytes.

Methods: Picalm expression and epigenetic regulation by microRNAs (miRNAs) and DNA methylation were analyzed in WAT of diabetes-resistant (DR) and diabetes-prone (DP) female New Zealand Obese (NZO) mice and in male NZO after time-restricted feeding (TRF) and alternate-day fasting (ADF).

View Article and Find Full Text PDF

Ribonuclease L (RNase L) plays a crucial role in an antiviral pathway of interferon-induced innate immunity by degrading RNAs to prevent viral replication. Modulating RNase L activity thus mediates the innate immune responses and inflammation. Although a few small molecule-based RNase L modulators have been reported, only limited molecules have been mechanistically investigated.

View Article and Find Full Text PDF

Small molecules targeting the ubiquitous latent ribonuclease (RNase L), which has limited sequence specificity toward single-stranded RNA substrates, hold great potential to be developed as broad-spectrum antiviral drugs by modulating the RNase L-mediated innate immune responses. The recent development of proximity-inducing bifunctional molecules, as described in the strategy of ribonuclease targeting chimeras, demonstrated that small-molecule RNase L activators can function as the essential RNase L-recruiting component to design bifunctional molecules for targeted RNA degradation. However, only a single screening study on small-molecule RNase L activators with poor potency has been reported to date.

View Article and Find Full Text PDF

Aminothiophene is a scaffold that is widely present in drugs and biologically active small molecules as chemical probes. In this study, 43 compounds sharing a 2-aminothiophenone-3-carboxylate (ATPC) scaffold, known to activate the ribonuclease L (RNase L), were synthesized and selected ATPCs showed enhancement of thermal stability of RNase L upon binding. Screening of antiproliferation activities against human cancer cell lines revealed that ATPCs represented by compounds 4l and 50 showed potent single-digit micromolar antiproliferation activity against human cancer cell lines.

View Article and Find Full Text PDF