The highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) is a bacterial pathogen recognition hub that mediates resistance by guarding host kinases for modification by pathogen effectors. The pseudokinase HOPZ-ETI DEFICIENT 1 (ZED1) is the only known ZAR1-guarded protein that interacts directly with a pathogen effector, HopZ1a, from the bacterial pathogen Pseudomonas syringae, making it a promising system for rational design of effector recognition for plant immunity. Here, we conducted an in-depth molecular analysis of ZED1.
View Article and Find Full Text PDFThe highly conserved angiosperm immune receptor HOPZ-ACTIVATED RESISTANCE1 (ZAR1) recognises the activity of diverse pathogen effector proteins by monitoring the ZED1-related kinase (ZRK) family. Understanding how ZAR1 achieves interaction specificity for ZRKs may allow for the expansion of the ZAR1-kinase recognition repertoire to achieve novel pathogen recognition outside of model species. We took advantage of the natural diversity of Arabidopsis thaliana kinases to probe the ZAR1-kinase interaction interface and found that A.
View Article and Find Full Text PDFPathogen pressure on hosts can lead to the evolution of genes regulating the innate immune response. By characterizing naturally occurring polymorphisms in immune receptors, we can better understand the molecular determinants of pathogen recognition. ZAR1 is an ancient Arabidopsis thaliana NLR (Nucleotide-binding [NB] Leucine-rich-repeat [LRR] Receptor) that recognizes multiple secreted effector proteins from the pathogenic bacteria Pseudomonas syringae and Xanthomonas campestris through its interaction with receptor-like cytoplasmic kinases (RLCKs).
View Article and Find Full Text PDFOver the past half-century, large mammal populations have declined substantially throughout East Africa, mainly due to habitat loss and unsustainable direct exploitation. While it has been acknowledged that the loss of large mammals can have direct and cascading effects on community composition and ecosystem characteristics, limited quantitative work has been done on how declines of large herbivore populations impacts the abundance of mutualistic symbionts. Using a space-for-time observational approach, we quantified the large mammal community alongside the densities, host preferences and behaviors of mutualistic red-billed oxpeckers (Buphagus erythrorhynchus), and yellow-billed oxpeckers (Buphagus africanus) in northern Tanzania.
View Article and Find Full Text PDF