The discovery probability of long-period comets (LPCs) passing near the Sun is highest during their first passage and then declines, or fades, during subsequent return passages. Comet fading is largely attributed to devolatilization and fragmentation via thermal processing within 2 to 3 astronomical unit (au) of the Sun (1 au being the Earth-Sun distance). Here, our numerical simulations show that comet-observing campaigns miss vast numbers of LPCs making returning passages through the Saturn region (near 10 au) because these comets fade during prior, even more distant passages exterior to Saturn and thus elude detection.
View Article and Find Full Text PDFMost known trans-Neptunian objects (TNOs) gravitationally scattering off the giant planets have orbital inclinations consistent with an origin from the classical Kuiper belt, but a small fraction of these "scattering TNOs" have inclinations that are far too large ( 45°) for this origin. These scattering outliers have previously been proposed to be interlopers from the Oort cloud or evidence of an undiscovered planet. Here we test these hypotheses using N-body simulations and the 69 centaurs and scattering TNOs detected in the Outer Solar Systems Origins Survey and its predecessors.
View Article and Find Full Text PDFNearly half the exoplanets found within binary star systems reside in very wide binaries with average stellar separations greater than 1,000 astronomical units (one astronomical unit (AU) being the Earth-Sun distance), yet the influence of such distant binary companions on planetary evolution remains largely unstudied. Unlike their tighter counterparts, the stellar orbits of wide binaries continually change under the influence of the Milky Way's tidal field and impulses from other passing stars. Here we report numerical simulations demonstrating that the variable nature of wide binary star orbits dramatically reshapes the planetary systems they host, typically billions of years after formation.
View Article and Find Full Text PDFWe present numerical simulations to model the production of observable long-period comets (LPCs) from the Oort Cloud, a vast reservoir of icy bodies surrounding the Sun. We show that inner Oort Cloud objects can penetrate Jupiter's orbit via a largely unexplored dynamical pathway, and they are an important, if not the dominant, source of known LPCs. We use this LPC production to place observationally motivated constraints on the population and mass of the inner Oort Cloud, which are consistent with giant planet formation theory.
View Article and Find Full Text PDF