Publications by authors named "Natalie A Bowerman"

Despite the enormous promise of T cell therapies, the isolation and study of human T cell receptors (TCRs) of dedicated specificity remains a major challenge. To overcome this limitation, we generated mice with a genetically humanized system of T cell immunity. We used VelociGene technology to replace the murine TCRαβ variable regions, along with regions encoding the extracellular domains of co-receptors CD4 and CD8, and major histocompatibility complex (MHC) class I and II, with corresponding human sequences.

View Article and Find Full Text PDF

T-cell-mediated hypersensitivity to metal cations is common in humans. How the T cell antigen receptor (TCR) recognizes these cations bound to a major histocompatibility complex (MHC) protein and self-peptide is unknown. Individuals carrying the MHCII allele, HLA-DP2, are at risk for chronic beryllium disease (CBD), a debilitating inflammatory lung condition caused by the reaction of CD4 T cells to inhaled beryllium.

View Article and Find Full Text PDF

Chronic beryllium disease (CBD) is a granulomatous lung disease characterized by the accumulation of beryllium (Be)-specific CD4(+) T cells in bronchoalveolar lavage. These expanded CD4(+) T cells are composed of oligoclonal T cell subsets, suggesting their recruitment to the lung in response to conventional Ag. In the current study, we noted that all bronchoalveolar lavage-derived T cell lines from HLA-DP2-expressing CBD patients contained an expansion of Be-responsive Vβ5.

View Article and Find Full Text PDF

Chronic beryllium disease (CBD) is a granulomatous lung disorder caused by a hypersensitivity to beryllium and characterized by the accumulation of beryllium-specific CD4(+) T cells in the lung. Genetic susceptibility to beryllium-induced disease is strongly associated with HLA-DP alleles possessing a glutamic acid at the 69th position of the β-chain (βGlu69). The structure of HLA-DP2, the most prevalent βGlu69-containing molecule, revealed a unique solvent-exposed acidic pocket that includes βGlu69 and represents the putative beryllium-binding site.

View Article and Find Full Text PDF

T cell receptor (TCR) engagement of peptide-major histocompatibility complex (pMHC) is essential to adaptive immunity, but it is unknown whether TCR signaling responses are influenced by the binding topology of the TCR-peptide-MHC complex. We developed yeast-displayed pMHC libraries that enabled us to identify new peptide sequences reactive with a single TCR. Structural analysis showed that four peptides bound to the TCR with distinct 3D and 2D affinities using entirely different binding chemistries.

View Article and Find Full Text PDF

Unconventional Ags, such as metals, stimulate T cells in a very specific manner. To delineate the binding landscape for metal-specific T cell recognition, alanine screens were performed on a set of Be-specific TCRs derived from the lung of a chronic beryllium disease patient. These TCRs are HLA-DP2-restricted and express nearly identical TCR Vβ5.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic beryllium disease (CBD) is a lung disorder resulting from workplace exposure to beryllium, leading to lung inflammation and fibrosis.
  • The risk of developing CBD varies between 2 to 16% among exposed workers based on genetic factors, especially linked to specific HLA-DP alleles.
  • Recent studies of HLA-DP2, a common HLA-DP molecule, have revealed structural features that help explain the connection between these genetic factors and increased susceptibility to CBD.
View Article and Find Full Text PDF

It has been proposed that MHC restriction during thymocyte selection is controlled by coreceptor (CD4 or CD8) sequestration of the signaling molecule Lck. We explored this model as a mechanism for preventing peripheral T cell activation due to non-MHC ligand cross-reactivities of TCRs. TCRs that have a range of affinities for a class I MHC ligand were transduced into a T cell hybridoma in the absence or presence of coreceptors.

View Article and Find Full Text PDF

Mouse T cell clone 2C recognizes two different major histocompatibility (MHC) ligands, the self MHC K(b) and the allogeneic MHC L(d). Two distinct peptides, SIY (SIYRYYGL) and QL9 (QLSPFPFDL), act as strong and specific agonists when bound to K(b) and L(d), respectively. To explore further the mechanisms involved in peptide potency and specificity, here we examined a collection of single amino acid peptide variants of SIY and QL9 for 1) T cell activity, 2) binding to their respective MHC, and 3) binding to the 2C T cell receptor (TCR) and high affinity TCR mutants.

View Article and Find Full Text PDF

The potency of a T cell is determined in large part by two interactions, binding of a cognate peptide to the MHC, and binding of the T cell receptor (TCR) to this pepMHC. Various studies have attempted to assess the relative importance of these interactions, and to correlate the corresponding binding parameters with the level of T cell activity mediated by the peptide. To further examine the properties that govern optimal T cell activity, here we engineered both the peptide:MHC interaction and the TCR:pepMHC interaction to generate improved T cell activity.

View Article and Find Full Text PDF

Elimination of peripheral tumors by adoptively transferred tumor-specific T cells may require killing of cancer cells and tumor stromal cells. Tumor Ags are cross-presented on stromal cells, resulting in direct cytotoxic T cell (CTL) killing of both Ag-expressing cancer cells and stromal cells. Indirect killing of Ag loss variant cells also occurs.

View Article and Find Full Text PDF

The growth of solid tumors depends on tumor stroma. A single adoptive transfer of CD8(+) CTLs that recognize tumor antigen-loaded stromal cells, but not the cancer cells because of MHC restriction, caused long-term inhibition of tumor growth. T cells persisted and continuously destroyed CD11b(+) myeloid-derived, F4/80(+) or Gr1(+) stromal cells during homeostasis between host and cancer.

View Article and Find Full Text PDF

alphabeta T cell receptors (TCRs) can crossreact with both self- and foreign- major histocompatibility complex (MHC) proteins in an enigmatic phenomenon termed alloreactivity. Here we present the 2.35 A structure of the 2C TCR complexed with its foreign ligand H-2L(d)-QL9.

View Article and Find Full Text PDF

Targeting cancer cells, as well as the nonmalignant stromal cells cross-presenting the tumor antigen (Ag), can lead to the complete destruction of well-established solid tumors by adoptively transferred Ag-specific cytotoxic T lymphocytes (CTLs). If, however, cancer cells express only low levels of the Ag, then stromal cells are not destroyed, and the tumor escapes as Ag loss variants. We show that treating well-established tumors expressing low levels of Ag with local irradiation or a chemotherapeutic drug causes sufficient release of Ag to sensitize stromal cells for destruction by CTLs.

View Article and Find Full Text PDF