Cyclodextrins (CDs) are cyclic oligosaccharides capable of forming inclusion complexes with various guest molecules, enhancing solubility, stability, and bioavailability. This review outlines the structural features of native CDs and their chemically modified derivatives, emphasizing the influence of functionalization on host-guest interactions. Synthetic approaches for CD derivatization are summarized, with attention to recent developments in stimuli-responsive systems and targeted drug delivery.
View Article and Find Full Text PDFPolymers (Basel)
June 2025
This study presents novel skin-compatible biomaterials based on guar gum and dextran sulfate matrices, incorporating softwood lignin, lignin esterified with aspartic acid, and extract. The materials were prepared via casting and evaluated for physicochemical, mechanical, and biological properties. Spectroscopic analyses confirmed successful lignin esterification, with new carbonyl and amide peaks and a nitrogen signal (3.
View Article and Find Full Text PDFBiopolymeric drug delivery systems enhance the bioavailability and therapeutic efficacy of poorly soluble bioactive compounds. In this study, chitosan (Chi), dextran (Dex), carboxymethyl dextran (mDex), lignin (L), and curcumin (Cu) were combined to develop materials with controlled release, antioxidant, and anti-inflammatory properties. The mechanical evaluation showed that Chi-mDex-L-Cu exhibited the highest diametral tensile strength (2.
View Article and Find Full Text PDFPolymers (Basel)
August 2024
This study focuses on the development of adsorptive materials to retain degraded 5w40 motor oil. The materials were prepared using xanthan (XG) and XG esterified with acrylic acid (XGAC) as the polymeric matrix. LignoBoost lignin (LB), LB esterified with oleic (LBOL), stearic acid (LBST) and montmorillonite (CL) were added into XG and XGAC matrices to obtain the adsorbents.
View Article and Find Full Text PDFPolymers (Basel)
June 2024
The antifungal agent, ketoconazole, and the anti-inflammatory drug, piroxicam, were incorporated into matrices of xanthan or oleic acid-esterified xanthan (Xn) and polyurethane (PU), to develop topical drug delivery systems. Compared to matrices without bioactive compounds, which only showed a nominal compressive stress of 32.18 kPa (sample xanthan-polyurethane) at a strain of 71.
View Article and Find Full Text PDFPolymers (Basel)
April 2023
Heparin (Hep), with its anticoagulant activity, antiangiogenic and apoptotic effects, and growth factor binding, plays an important role in various biological processes. Formulations as drug delivery systems protect its biological activity, and limit the potential side effects of faulty administration. The objective of this study was to develop novel xanthan-based materials as a delivery carrier for heparin.
View Article and Find Full Text PDFβ-Cyclodextrin was attached to lignin/lignin crosslinked by epichlorohydrin and served as a drug delivery matrix. Ketoconazole and piroxicam were added into the polymeric matrix as antifungal and anti-inflammatory agents, respectively. The percentage of drug retained ranged from 48.
View Article and Find Full Text PDFThis study presents new drug delivery systems based on xanthan, unmodified or modified by esterification with oleic acid, and alginate for controlled release of bioactive substances with anti-inflammatory (piroxicam) and antifungal properties (ketoconazole). The mechanical properties of the developed drug carriers showed that their compressive strength was affected by the encapsulation of the bioactive principles. When ketoconazole was added into the xanthan/alginate matrix, an increment in the mechanical strength was recorded (66.
View Article and Find Full Text PDFDesigning composites based on natural polymers has attracted attention for more than a decade due to the possibility to manufacture medical devices which are biocompatible with the human body. Herein, we present some biomaterials made up of collagen, polyurethane, and cellulose doped with lignin and lignin-metal complex, which served as transcutaneous drug delivery systems. Compared with base material, the compressive strength and the elastic modulus of biocomposites comprising lignin or lignin-metal complex were significantly enhanced; thus, the compressive strength increased from 61.
View Article and Find Full Text PDFHerein we present a new biomaterial based on cellulose, collagen and sodium alginate which served as a matrix for the incorporation of bioactive substances with antioxidant properties. Compared with pure cellulose hydrogels, the compressive strength and the elastic modulus of cellulose-collagen-alginate hydrogels were significantly enhanced, thus the compressive strength increased from 0.256 kPa to 6.
View Article and Find Full Text PDFHere we present a new biomaterial based on cellulose, collagen and polyurethane, obtained by dissolving in butyl imidazole chloride. This material served as a matrix for the incorporation of tannin and lipoic acid, as well as bioactive substances with antioxidant properties. The introduction of these bioactive principles into the base matrix led to an increase of the compressive strength in the range 105-139 kPa.
View Article and Find Full Text PDFDifferent biomass wastes were successfully blended with starch and Ecoflex® viz. poly(butylene adipate-co-terephthalate), without glycerol addition, to obtain biocomposite materials. The mechanical properties, as well as thermal and surface properties, of the developed composites were evaluated.
View Article and Find Full Text PDFThe study reported here presents a comparative screening of three medicinal plants including oregano (Origanum vulgare L.), lavender (Lavandula angustifolia) and lemon balm (Melissa officinalis) having the same geographical origin, the Southeast region of Romania, and growing in the same natural conditions. The contents of total phenolics and total flavonoids for the extracts of these were determined.
View Article and Find Full Text PDF