Korean J Physiol Pharmacol
September 2025
Skeletal muscle differentiation is a complex process regulated by a network of genes and transcription factors. Recent studies have revealed the roles of circular RNAs (circRNAs) and microRNAs (miRNAs) in modulating gene expression during myogenesis. In this study, we focused on the functional interplay between circAtxn10, miR-143-3p, and the nicotinic acetylcholine receptor subunit alpha 1 (Chrna1) in skeletal muscle differentiation.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Calcium deposition in vascular smooth muscle cells (VSMCs), a form of ectopic ossification in blood vessels, can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that CCAAT/enhancer-binding protein beta (C/EBPβ) potentiates calcium deposition in VSMCs and mouse aorta induced by inorganic phosphate (Pi) or vitamin D. Based on cDNA microarray and RNA sequencing data of Pi-treated rat VSMCs, C/EBPβ was found to be upregulated and thus selected for further evaluation.
View Article and Find Full Text PDFExp Mol Med
October 2024
Vascular calcification (VC) refers to the accumulation of mineral deposits on the walls of arteries and veins, and it is closely associated with increased mortality in cardiovascular disease patients, particularly among high-risk patients with diabetes and chronic kidney disease (CKD). Neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) is a ubiquitin-like protein that plays a pivotal role in various cellular functions, primarily through its conjugation to target proteins and subsequent relay of biological signals. However, the role of NEDDylation in VC has not been investigated.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2023
Heart failure is a leading cause of death and is often accompanied by activation of quiescent cardiac myofibroblasts, which results in cardiac fibrosis. In this study, we aimed to identify novel circular RNAs that regulate cardiac fibrosis. We applied transverse aortic constriction (TAC) for 1, 4, and 8 weeks in mice.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2022
Vascular calcification (VC), or calcium deposition inside the blood vessels, is common in patients with atherosclerosis, cardiovascular disease, and chronic kidney disease. Although several treatments are available to reduce calcification, the incidence of VC continues to rise. Recently, there have been several reports describing the regulation of circular RNAs (circRNAs) in various diseases.
View Article and Find Full Text PDFVascular calcification increases morbidity and mortality in patients with cardiovascular and renal diseases. Previously, we reported that histone deacetylase 1 prevents vascular calcification, whereas its E3 ligase, mouse double minute 2 homolog (MDM2), induces vascular calcification. In the present study, we identified the upstream regulator of MDM2.
View Article and Find Full Text PDFMol Ther Nucleic Acids
December 2020
Vascular calcification, the ectopic deposition of calcium in blood vessels, develops in association with various metabolic diseases and atherosclerosis and is an independent predictor of morbidity and mortality associated with these diseases. Herein, we report that reduction of () causes an increase in activating transcription factor 3 (ATF3), a novel osteogenic transcription factor, in vascular smooth muscle cells. Both microRNA (miRNA) and mRNA microarrays were performed with rat vascular smooth muscle cells, and reciprocally regulated pairs of miRNA and mRNA were selected after bioinformatics analysis.
View Article and Find Full Text PDFCalcium deposition in vascular smooth muscle cells (VSMCs) is a form of ectopic ossification in blood vessels. It can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that the microRNA miR-134-5p potentiates inorganic phosphate (Pi)-induced calcium deposition in VSMCs by inhibiting histone deacetylase 5 (HDAC5).
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2020
Circular RNAs (circRNAs) are generally formed by back splicing and are expressed in various cells. Vascular calcification (VC), a common complication of chronic kidney disease (CKD), is often associated with cardiovascular disease. The relationship between circRNAs and VC has not yet been studied.
View Article and Find Full Text PDFVascular calcification is characterized by the accumulation of hydroxyapatite crystals, which is a result of aberrant mineral metabolism. Although many clinical studies have reported its adverse effects on cardiovascular morbidity, the molecular mechanism of vascular calcification, especially the involvement of long noncoding RNAs (lncRNAs), is not yet reported. From the transcriptomic analysis, we discovered hundreds of lncRNAs differentially expressed in rat vascular smooth muscle cells (VSMCs) treated with inorganic phosphate, which mimics vascular calcification.
View Article and Find Full Text PDFExp Mol Med
January 2018
Sumoylation, the conjugation of a small ubiquitin-like modifier (SUMO) protein to a target, has diverse cellular effects. However, the functional roles of the SUMO modification during myogenesis have not been fully elucidated. Here, we report that basal sumoylation of histone deacetylase 1 (HDAC1) enhances the deacetylation of MyoD in undifferentiated myoblasts, whereas further sumoylation of HDAC1 contributes to switching its binding partners from MyoD to Rb to induce myocyte differentiation.
View Article and Find Full Text PDFS100 calcium-binding protein A4 (S100A4) induces proliferation and migration of vascular smooth muscle cells (VSMCs). We aimed to find the microRNA regulating S100A4 expression. S100A4 transcripts are abruptly increased in the acute phase of carotid arterial injury 1 day later (at day 1) but gradually decreases at days 7 and 14.
View Article and Find Full Text PDFNat Commun
February 2016
Vascular calcification (VC) is often associated with cardiovascular and metabolic diseases. However, the molecular mechanisms linking VC to these diseases have yet to be elucidated. Here we report that MDM2-induced ubiquitination of histone deacetylase 1 (HDAC1) mediates VC.
View Article and Find Full Text PDFHigh glucose-insulted bone marrow-derived mesenchymal stem cells (BMCs) showed impaired angiogenesis along with downregulation of stem cell factor (SCF). This study was designed to determine the involvement of microRNAs (miR), which are actively involved in the physiological function of stem cells. We observed that miR-34c was significantly induced by high glucose treatment and blunted tube formation of BMCs.
View Article and Find Full Text PDFThe fine balance between proliferation and differentiation of vascular smooth muscle cells (VSMCs) is indispensable for the maintenance of healthy blood vessels, whereas an increase in proliferation participates in pathologic cardiovascular events such as atherosclerosis and restenosis. Here we report that microRNA-34c (miR-34c) targets stem cell factor (SCF) to inhibit VSMC proliferation and neointimal hyperplasia. In an animal model, miR-34c was significantly increased in the rat carotid artery after catheter injury.
View Article and Find Full Text PDFSkeletal muscle atrophy results from the net loss of muscular proteins and organelles and is caused by pathologic conditions such as nerve injury, immobilization, cancer, and other metabolic diseases. Recently, ubiquitination-mediated degradation of skeletal-muscle-specific transcription factors was shown to be involved in muscle atrophy, although the mechanisms have yet to be defined. Here we report that ret finger protein (RFP), also known as TRIM27, works as an E3 ligase in Pax7-induced degradation of MyoD.
View Article and Find Full Text PDFRationale: Small heterodimer partner (SHP; NR0B2) is an atypical orphan nuclear receptor that lacks a conventional DNA-binding domain. Through interactions with other transcription factors, SHP regulates diverse biological events, including glucose metabolism in liver. However, the role of SHP in adult heart diseases has not yet been demonstrated.
View Article and Find Full Text PDFBackground And Objectives: Diabetes is reported to reduce the function or number of progenitor cells. We compared the gene expression patterns of bone marrow-derived mesenchymal stem cells from diabetic (DM-BMCs) and healthy (non-DM-BMCs) rats and suggested Angiopoietin-like 4 (Angptl4) could be a responsible factor for impaired angiogenesis of DM-BMCs.
Subjects And Methods: BMCs were isolated from DM or non-DM rat, and in vitro angiogenesis activity was compared by tube formation assay on Matrigel and complementary deoxyribonucleic acid expression was analyzed by microarray with or without oxytocin treatment.
Rationale: Histone deacetylases (HDACs) are closely involved in cardiac reprogramming. Although the functional roles of class I and class IIa HDACs are well established, the significance of interclass crosstalk in the development of cardiac hypertrophy remains unclear.
Objective: Recently, we suggested that casein kinase 2α1-dependent phosphorylation of HDAC2 leads to enzymatic activation, which in turn induces cardiac hypertrophy.
Objective: The proliferation and remodeling of vascular smooth muscle cells (VSMCs) is an important pathological event in atherosclerosis and restenosis. Here we report that microRNA-132 (miR-132) blocks vascular smooth muscle cells (VSMC) proliferation by inhibiting the expression of LRRFIP1 [leucine-rich repeat (in Flightless 1) interacting protein-1].
Methods And Results: MicroRNA microarray revealed that miR-132 was upregulated in the rat carotid artery after catheter injury, which was further confirmed by quantitative real-time RT-PCR.
Vascular smooth muscle cell (VSMC) proliferation plays a key role in neointimal hyperplasia and restenosis. Here we report the role of the microRNA miR-142-5p and its downstream target genes on the proliferation of cultured VSMCs. miR-142-5p promoted VSMC proliferation by down-regulating B cell translocation gene 3 (BTG3).
View Article and Find Full Text PDFHistone lysine methylation and demethylation are considered critical steps in transcriptional regulation. In this report, we performed chromatin immunoprecipitation with microarray technology (ChIP-chip) analysis to examine the genome-wide occupancy of H3K9-me2 during all-trans-retinoic acid (ATRA)-induced differentiation of HL-60 promyelocytic leukemia cells. Using this approach, we found that KDM3B, which contains a JmjC domain, was downregulated during differentiation through the recruitment of a corepressor complex.
View Article and Find Full Text PDFHistone lysine methylation, as one of the most important factors in transcriptional regulation, is associated with a various physiological conditions. Using a bioinformatics search, we identified and subsequently cloned mouse SET domain containing 3 (SETD3) with SET (Su(var)3-9, Enhancer-of-zeste and Trithorax) and Rubis-subs-bind domains. SETD3 is a novel histone H3K4 and H3K36 methyltransferase with transcriptional activation activity.
View Article and Find Full Text PDFBackground: Cardiac hypertrophy is characterized by transcriptional reprogramming of fetal gene expression, and histone deacetylases (HDACs) are tightly linked to the regulation of those genes. We previously demonstrated that activation of HDAC2, 1 of the class I HDACs, mediates hypertrophy. Here, we show that casein kinase-2α1 (CK2α1)-dependent phosphorylation of HDAC2 S394 is required for the development of cardiac hypertrophy.
View Article and Find Full Text PDFNucleic Acids Res
October 2010
The dynamic exchange of histone lysine methylation status by histone methyltransferases and demethylases has been previously implicated as an important factor in chromatin structure and transcriptional regulation. Using immunoaffinity TAP analysis, we purified the WHISTLE-interacting protein complexes, which include the heat shock protein HSP90α and the jumonji C-domain harboring the histone demethylase JMJD1C. In this study, we demonstrate that JMJD1C specifically demethylates histone H3K9 mono- and di-methylation, and mediates transcriptional activation.
View Article and Find Full Text PDF