Proc Natl Acad Sci U S A
August 2025
AI is now a cornerstone of modern dataset analysis. In many real world applications, practitioners are concerned with controlling specific kinds of errors, rather than minimizing the overall number of errors. For example, biomedical screening assays may primarily be concerned with mitigating the number of false positives rather than false negatives.
View Article and Find Full Text PDFCancer Res Commun
April 2025
Abstract: Screening for colorectal cancer with blood-based testing should detect advanced adenomas (AA), facilitating more effective cancer prevention. We evaluated four different methods to detect AAs in plasma: (i) a machine learning algorithm, Signatures of fragment Length (SignaL), based on cell-free DNA (cfDNA) fragmentation; (ii) a “Protein-17” assay measuring 17 cancer-associated proteins; (iii) a global aneuploidy score (GAS); and (iv) cfDNA mutation analysis querying 15 genes commonly mutated in colorectal cancer. Existing data from study populations with and without cancer were utilized to determine 99.
View Article and Find Full Text PDFSci Transl Med
January 2024
We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-free DNA through the amplification of ~350,000 repeated elements with a single primer. We hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with RealSeqS might reveal other differences between plasma samples from patients with and without cancer. This hypothesis was tested through the development of a machine learning approach called Alu Profile Learning Using Sequencing (A-PLUS) and its application to 7615 samples from 5178 individuals, 2073 with solid cancer and the remainder without cancer.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2023
DNA polymerase ε (Polε) is a large, four-subunit polymerase that is conserved throughout the eukaryotes. Its primary function is to synthesize DNA at the leading strand during replication. It is also involved in a wide variety of fundamental cellular processes, including cell cycle progression and DNA repair/recombination.
View Article and Find Full Text PDFCommun Integr Biol
January 2012
Natural Killer (NK) cells and Cytotoxic T lymphocytes (CTL) are critical for the immune response against virus infections or transformed cells. They kill target cells via polarized exocytosis of lytic proteins from secretory lysosomes (SL). Rab27a and munc13-4 interact directly and are required for target cell killing.
View Article and Find Full Text PDFCytotoxic T lymphocytes kill target cells via the polarized secretion of cytotoxic granules at the immune synapse. The lytic granules are initially recruited around the polarized microtubule-organizing center. In a dynein-dependent transport process, the granules move along microtubules toward the microtubule-organizing center in the minus-end direction.
View Article and Find Full Text PDFThe molecular mechanisms that underlie T-cell quiescence are poorly understood. In the present study, we report a primary immunodeficiency phenotype associated with MST1 deficiency and primarily characterized by a progressive loss of naive T cells. The in vivo consequences include recurrent bacterial and viral infections and autoimmune manifestations.
View Article and Find Full Text PDFCytotoxic T lymphocytes (CTLs) kill target cells through the polarized release of lytic molecules from secretory lysosomes. Loss of munc13-4 function inhibits this process and causes familial hemophagocytic lymphohistiocytosis type 3 (FHL3). munc13-4 binds rab27a, but the necessity of the complex remains enigmatic, because studies in knockout models suggest separate functions.
View Article and Find Full Text PDFBackground: Two NF-kappaB signaling pathways, Toll and immune deficiency (imd), are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense.
View Article and Find Full Text PDFThe granule-dependent cytotoxic activity of lymphocytes plays a critical role in the defense against virally infected cells and tumor cells. The importance of this cytotoxic pathway in immune regulation is evidenced by the severe and often fatal condition, known as hemophagocytic lymphohistiocytic syndrome (HLH) that occurs in mice and humans with genetically determined impaired lymphocyte cytotoxic function. HLH manifests as the occurrence of uncontrolled activation of T lymphocytes and macrophages infiltrating multiple organs.
View Article and Find Full Text PDFOver 1 billion people are estimated to be overweight, placing them at risk for diabetes, cardiovascular disease, and cancer. We performed a systems-level genetic dissection of adiposity regulation using genome-wide RNAi screening in adult Drosophila. As a follow-up, the resulting approximately 500 candidate obesity genes were functionally classified using muscle-, oenocyte-, fat-body-, and neuronal-specific knockdown in vivo and revealed hedgehog signaling as the top-scoring fat-body-specific pathway.
View Article and Find Full Text PDFInnate immunity represents the first line of defense in animals. We report a genome-wide in vivo Drosophila RNA interference screen to uncover genes involved in susceptibility or resistance to intestinal infection with the bacterium Serratia marcescens. We first employed whole-organism gene suppression, followed by tissue-specific silencing in gut epithelium or hemocytes to identify several hundred genes involved in intestinal antibacterial immunity.
View Article and Find Full Text PDFSerratia marcescens is an entomopathogenic bacterium that opportunistically infects a wide range of hosts, including humans. In a model of septic injury, if directly introduced into the body cavity of Drosophila, this pathogen is insensitive to the host's systemic immune response and kills flies in a day. We find that S.
View Article and Find Full Text PDFPhagocytosis is a complex, evolutionarily conserved process that plays a central role in host defense against infection. We have identified a predicted transmembrane protein, Eater, which is involved in phagocytosis in Drosophila. Transcriptional silencing of the eater gene in a macrophage cell line led to a significant reduction in the binding and internalization of bacteria.
View Article and Find Full Text PDF