Background: No commercial vaccines are available against drug-resistant Shigella due to serotype-specific/narrow-range of protection. Nanoparticle-based biomimetic vaccines involving stable, conserved, immunogenic proteins fabricated using facile chemistries can help formulate a translatable cross-protective Shigella vaccine. Such systems can also negate cold-chain transportation/storage thus overcoming challenges prevalent in various settings.
View Article and Find Full Text PDFAs declared by WHO, antimicrobial resistance (AMR) is a high priority issue with a pressing need to develop impactful technologies to curb it. The rampant and inappropriate use of antibiotics due to the lack of adequate and timely diagnosis is a leading cause behind AMR evolution. Unfortunately, populations with poor economic status and those residing in densely populated areas are the most affected ones, frequently leading to emergence of AMR pathogens.
View Article and Find Full Text PDFBiomaterials
April 2022
Poor adherence to drug dosing schedule is responsible for ∼50% of hospitalization cases. Most patients fail to adhere to a strict dosing schedule due to invasive drug administration, off-target toxicities, or medical conditions like dementia. The emerging concept of wearable devices (WDs), implantable devices (IDs) and combined wearable and implantable devices (WIDs) for drug delivery has created new opportunities for treating patients with chronic diseases needing repeated and long-term medical attention like diabetes, ocular disorders, cancer, wound healing, cardiovascular diseases, and contraception.
View Article and Find Full Text PDFWith the acquirement of antibiotic resistance, has resulted in multiple epidemics of shigellosis, an infectious diarrheal disease, causing thousands of deaths per year. Unfortunately, there are no licensed vaccines, primarily due to low or serotype-specific immunogenicity. Thus, conserved subunit vaccines utilizing recombinant invasion plasmid antigens (Ipa) have been explored as cross-protective vaccine candidates.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
March 2022
Aging is a continuous process defined by a progressive functional decline in physiological parameters. Skin, being one of the most vulnerable organs, shows early signs of aging which are predominantly affected by intrinsic factors like hormone, gender, mood, enzymes, and genetic predisposition, and extrinsic factors like exposure to radiation, air pollution, and heat. Visible morphological and anatomical changes associated with skin aging occur due to underlying physiological aberrations governed by numerous complex interactions at cellular and subcellular levels.
View Article and Find Full Text PDFEndophthalmitis is an infectious disease that affects the entire eye spreading to the internal retinal layers and the vitreous and causes severe sight-threatening conditions. Current treatment strategies rely on intraocular injections of antibiotics that are invasive, may lead to procedural complications and, ultimately, blindness. In this study, we developed a non-invasive strategy as an eyedrop containing nanoparticle-based dual-drug delivery system in which the hydrophobic poly-L-lactide core was loaded with azithromycin or triamcinolone acetonide, and the hydrophilic shell was made of chitosan.
View Article and Find Full Text PDFInflammatory disease (ID) is an umbrella term encompassing all illnesses involving chronic inflammation as the central manifestation of pathogenesis. These include, inflammatory bowel diseases, hepatitis, pulmonary disorders, atherosclerosis, myocardial infarction, pancreatitis, arthritis, periodontitis, psoriasis. The IDs create a severe burden on healthcare and significantly impact the global socio-economic balance.
View Article and Find Full Text PDFPaclitaxel (PTX) is a potent anticancer agent, which is clinically administered by infusion for treating pulmonary metastasis of different cancers. Systemic injection of PTX is promising in treating pulmonary metastasis of various cancers but simultaneously leads to many severe complications in the body. In this study, we have demonstrated a noninvasive approach for delivering PTX to deep pulmonary tissues via an inhalable phospholipid-based nanocochleate platform and showed its potential in treating pulmonary metastasis of melanoma cancer.
View Article and Find Full Text PDFRheumatoid Arthritis (RA), one of the leading causes of disability due to progressive autoimmune destruction of synovial joints, affects ∼1% of the global population. Standard therapy helps in reducing inflammation and delaying the progression of RA but is limited by non-responsiveness on long-term use and several side-effects. The conventional nanocarriers (CNCs), to some extent, minimize toxicity associated with free drug administration while improving the therapeutic efficacy.
View Article and Find Full Text PDFChemotherapy in drug-resistant cancers remains a challenge. Owing to associated poor bioavailability, oral administration of hydrophobic anticancer drugs like paclitaxel has been quite challenging, with the scenario being further complicated by Pgp efflux in drug-resistant tumours. We developed a novel nanocochleates (CPT) system encapsulating paclitaxel (PTX) to treat resistant colon cancer by oral administration.
View Article and Find Full Text PDFVaccines activate suitable immune responses to fight against diseases but can possess limitations such as compromised efficacy and immunogenic responses, poor stability, and requirement of adherence to multiple doses. 'Nanovaccines' have been explored to elicit a strong immune response with the advantages of nano-sized range, high antigen loading, enhanced immunogenicity, controlled antigen presentation, more retention in lymph nodes and promote patient compliance by a lower frequency of dosing. Various types of nanoparticles with diverse pathogenic or foreign antigens can help to overcome immunotolerance and alleviate the need of booster doses as required with conventional vaccines.
View Article and Find Full Text PDFTuberculosis - a disease caused by Mycobacterium tuberculosis (Mtb), is one of the most devastating disease. The discovery of Ser/Thr protein kinases (STPKs) in Mtb opened a new avenue for developing anti-tubercular inhibitors. The in-vivo inhibitory effects of many metal ions have been demonstrated in literature.
View Article and Find Full Text PDFBacterial lipopolysaccharide (LPS) has been widely used as an antigen and adjuvant in immunological applications. Amongst the methods developed for extraction of LPS, hot phenol extraction (HPE) method is the gold standard. However, the HPE method provides poor yield of LPS (~4.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
June 2016
In peripheral nerve injuries where direct suturing of nerve endings is not feasible, nerve regeneration has been facilitated through the use of artificially aligned fibrous scaffolds that provide directional growth of neurons to bridge the gap. The degree of fiber alignment is crucial and can impact the directionality of cells in a fibrous scaffold. While there have been multiple approaches that have been used for controlling fiber alignment, however, they have been associated with a compromised control on other properties, such as diameter, morphology, curvature, and topology of fibers.
View Article and Find Full Text PDF