Publications by authors named "Nadia A Chuzhanova"

Although alternative DNA secondary structures (non-B DNA) can induce genomic rearrangements, their associated mutational spectra remain largely unknown. The helicase activity of WRN, which is absent in the human progeroid Werner syndrome, is thought to counteract this genomic instability. We determined non-B DNA-induced mutation frequencies and spectra in human U2OS osteosarcoma cells and assessed the role of WRN in isogenic knockdown (WRN-KD) cells using a supF gene mutation reporter system flanked by triplex- or Z-DNA-forming sequences.

View Article and Find Full Text PDF

The cytosine-guanine (CpG) dinucleotide has long been known to be a hotspot for pathological mutation in the human genome. This hypermutability is related to its role as the major site of cytosine methylation with the attendant risk of spontaneous deamination of 5-methylcytosine (5mC) to yield thymine. Cytosine methylation, however, also occurs in the context of CpNpG sites in the human genome, an unsurprising finding since the intrinsic symmetry of CpNpG renders it capable of supporting a semi-conservative model of replication of the methylation pattern.

View Article and Find Full Text PDF

Nonallelic homologous recombination (NAHR) is responsible for the recurrent rearrangements that give rise to genomic disorders. Although meiotic NAHR has been investigated in multiple contexts, much less is known about mitotic NAHR despite its importance for tumorigenesis. Because type-2 NF1 microdeletions frequently result from mitotic NAHR, they represent a good model in which to investigate the features of mitotic NAHR.

View Article and Find Full Text PDF

The +1169A allele of the A/T single nucleotide polymorphism (SNP; rs2665802), located within intron 4 of the human growth hormone 1 ( GH1 ) gene, has been associated with reduced levels of circulating GH and insulin-like growth factor 1, a reduced risk of colorectal cancer and a predisposition to osteoporosis. Whether this intronic SNP is itself the functional polymorphism responsible for exerting a direct effect on GH1 gene expression, however, or whether it is instead in linkage disequilibrium with the functional SNP, has been an open question. The evolutionary conservation of the +1169T allele (and the surrounding intronic sequence) in the bovine genome, as well as in primate genomes, is, however, suggestive of its functionality.

View Article and Find Full Text PDF

Large microdeletions encompassing the neurofibromatosis type-1 (NF1) gene and its flanking regions at 17q11.2 belong to the group of genomic disorders caused by aberrant recombination between segmental duplications. The most common NF1 microdeletions (type-1) span 1.

View Article and Find Full Text PDF

Mutational analysis of the GNPTAB gene was performed in 46 apparently unrelated patients with mucolipidosis IIalpha/beta or IIIalpha/beta, characterized by the mistargeting of multiple lysosomal enzymes as a consequence of a UDP-GlcNAc-1-phosphotransferase defect. The GNPTAB mutational spectrum comprised 25 distinct mutant alleles, 22 of which were novel, including 3 nonsense mutations (p.Q314X, p.

View Article and Find Full Text PDF

Submicroscopic inversions have contributed significantly to the genomic divergence between humans and chimpanzees over evolutionary time. Those microinversions which are flanked by segmental duplications (SDs) are presumed to have originated via non-allelic homologous recombination between SDs arranged in inverted orientation. However, the nature of the mechanisms underlying those inversions which are not flanked by SDs remains unclear.

View Article and Find Full Text PDF

Mucolipidosis type III (MLIII) is an autosomal recessive disorder affecting lysosomal hydrolase trafficking. In a study of 10 patients from seven families with a clinical phenotype and enzymatic diagnosis of MLIII, six novel GNPTG gene mutations were identified. These included missense (p.

View Article and Find Full Text PDF

Nonsense mutations account for approximately 11% of all described gene lesions causing human inherited disease and approximately 20% of disease-associated single-basepair substitutions affecting gene coding regions. Pathological nonsense mutations resulting in TGA (38.5%), TAG (40.

View Article and Find Full Text PDF

The Human Gene Mutation Database (HGMD) constitutes a comprehensive core collection of data on germ-line mutations in nuclear genes underlying or associated with human inherited disease (http://www.hgmd.org).

View Article and Find Full Text PDF

Approximately 5% of patients with neurofibromatosis type 1 (NF1) exhibit gross deletions that encompass the NF1 gene and its flanking regions. The breakpoints of the common 1.4-Mb (type 1) deletions are located within low-copy repeats (NF1-REPs) and cluster within a 3.

View Article and Find Full Text PDF

Background: Evolutionary processes in gene regulatory regions are major determinants of organismal evolution, but exceptionally challenging to study. We explored the possibilities of evolutionary analysis of phylogenetic footprints in 5'-noncoding sequences (NCS) from 27 ribulose-1,5-bisphosphate carboxylase small subunit (rbcS) genes, from three dicot families (Brassicaceae, Fabaceae and Solanaceae).

Results: Sequences of up to 400 bp encompassing proximal promoter and 5'-untranslated regions were analyzed.

View Article and Find Full Text PDF

A new computer program, called Mallard, is presented for screening entire 16S rRNA gene libraries of up to 1,000 sequences for chimeras and other artifacts. Written in the Java computer language and capable of running on all major operating systems, the program provides a novel graphical approach for visualizing phylogenetic relationships among 16S rRNA gene sequences. To illustrate its use, we analyzed most of the large libraries of cloned bacterial 16S rRNA gene sequences submitted to the public repository during 2005.

View Article and Find Full Text PDF

DNA sequence features were sought that could be used for the in silico ascertainment of the likely functional consequences of single nucleotide changes in human gene promoter regions. To identify relevant features of the local DNA sequence context, we transformed into consensus tables the nucleotide composition of sequences flanking 101 promoter SNPs of type C<-->T or A<-->G, defined empirically as being either 'functional' or 'non-functional' on the basis of a standardised reporter gene assay. The similarity of a given sequence to these consensus tables was then measured by means of the Shapiro-Senapathy score.

View Article and Find Full Text PDF

The SFTPB gene indel g.1549C > GAA (121ins2) accounts for about 2/3 of the mutant alleles underlying complete surfactant protein B deficiency. It is unclear, however, whether its prevalence is due to recurrent mutation or a founder effect.

View Article and Find Full Text PDF

A new method for detecting chimeras and other anomalies within 16S rRNA sequence records is presented. Using this method, we screened 1,399 sequences from 19 phyla, as defined by the Ribosomal Database Project, release 9, update 22, and found 5.0% to harbor substantial errors.

View Article and Find Full Text PDF

In the Human Gene Mutation Database (www.hgmd.org), microdeletions and microinsertions causing inherited disease (both defined as involving < or = 20 bp of DNA) account for 8,399 (17%) and 3,345 (7%) logged mutations, in 940 and 668 genes, respectively.

View Article and Find Full Text PDF

Transfer of nucleic acid from cytoplasmic organelles to the nuclear genome is a well-established mechanism of evolutionary change in eukaryotes. Such transfers have occurred throughout evolution, but so far, none has been shown unequivocally to occur de novo to cause a heritable human disease. We have characterized a patient with a de novo nucleic acid transfer from the mitochondrial to the nuclear genome, a transfer that is responsible for a sporadic case of Pallister-Hall syndrome, a condition usually inherited in an autosomal dominant fashion.

View Article and Find Full Text PDF

A relatively rare type of mutation causing human genetic disease is the indel, a complex lesion that appears to represent a combination of micro-deletion and micro-insertion. In the absence of meta-analytical studies of indels, the mutational mechanisms underlying indel formation remain unclear. Data from the Human Gene Mutation Database (HGMD) were therefore used to compare and contrast 211 different indels underlying genetic disease in an attempt to deduce the processes responsible for their genesis.

View Article and Find Full Text PDF

Complexity analysis is capable of highlighting those gross evolutionary changes in gene promoter regions (loosely termed "promoter shuffling") that are undetectable by conventional DNA sequence alignment. Complexity analysis was therefore used here to identify the modular components (blocks) of the orthologous beta-globin gene promoter sequences of 22 vertebrate species, from zebrafish to humans. Considerable variation between the beta-globin gene promoters was apparent in terms of block presence/absence, copy number, and relative location.

View Article and Find Full Text PDF