Fretting-corrosion is one of the failure processes in many applications, including biomedical implants. For example, the modern design of hip implants with multiple components offers better flexibility and inventory storage. However, it will trigger the fretting at the implant interfaces with a small displacement amplitude (< 5 µm) and usually in a partial slip region.
View Article and Find Full Text PDFBackground: The Lane plate was one of the first widely used bone plates, utilized in the first decades of the twentieth century. Here we present the results of a retrieval analysis on a Lane plate, and a review of the history of these plates. Our patient underwent plating of her femur with a Lane plate in 1938.
View Article and Find Full Text PDFPurpose: Heterotopic ossification (HO) formed over the major components and fixation screw heads of an alloplastic temporomandibular joint replacement (TMJR) prosthesis can result in decreased quality of life, limited function, prosthesis failure, and hinder prosthesis revision, replacement, or removal. This study simulated HO removal from the major components and fixation screw heads of alloplastic TMJR prostheses using an erbium, chromium-doped yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser and compared the results to conventional methods of HO removal. The surface morphology and chemical structure of the exposed components were analyzed.
View Article and Find Full Text PDFJ Bio Tribocorros
March 2022
Ti6Al4V is the most common titanium alloy within the biomaterial field. While material standards for different variations of this alloy exist, there are only minimal requirements with respect to its microstructure which is directly related to the alloy's properties. Thus, a better understanding of the Ti6Al4V microstructure of common contemporary implant components and its effect on the electrochemical behavior is needed; including additively manufactured (AM) devices.
View Article and Find Full Text PDFThe frequency of surgeries involving the use of metal implants in orthopedic medicine to replace degenerative or fractured joints is increasing, and it is therefore important to optimize the lifespan and quality of these implants. Advances in additive manufacturing (AM), or 3D printing, are creating new opportunities to personalize implants in ways that reduce mechanical stress at the joint implant interface and improve bone ingrowth and implant stability; however, it is not well understood if and to what degree the AM process alters the corrosion behavior of the materials it produces. In this study, six Ti6Al4V prints manufactured via a selective laser melting (SLM) method were examined regarding their corrosion behavior in both saline and bovine calf serum (BCS) solutions.
View Article and Find Full Text PDFPurpose: Metallic temporomandibular joint replacement (TMJR) systems vary depending on design, material composition, and manufacturing methods such as casting, forging, and additive manufacturing. Therefore, the purpose of this study was to measure the association between manufacturing process of TMJR systems in terms of microstructure and electrochemical properties.
Materials And Methods: The sample was composed of new or surgically retrieved TMJ replacement devices of either titanium alloy (Ti6Al4V) or cobalt-chromium-molybdenum (CoCrMo) alloy from 8 different manufacturers.