Imaging Neurosci (Camb)
January 2025
Transcranial Magnetic Stimulation (TMS) coil placement and pulse waveform current are often chosen to achieve a specified E-field dose on targeted brain regions. TMS neuronavigation could be improved by including real-time accurate distributions of the E-field dose on the cortex. We introduce a method and develop software for computing brain E-field distributions in real-time enabling easy integration into neuronavigation and with the same accuracy as -order finite element method (FEM) solvers.
View Article and Find Full Text PDFBackground: Writer's cramp (WC) dystonia is an involuntary movement disorder with distributed abnormalities in the brain's motor network. Prior studies established the potential for repetitive transcranial magnetic stimulation (rTMS) to either premotor cortex (PMC) or primary somatosensory cortex (PSC) to modify symptoms. However, clinical effects have been modest with limited understanding of the neural mechanisms hindering therapeutic advancement of this promising approach.
View Article and Find Full Text PDFBackground: Writer's cramp (WC) dystonia is an involuntary movement disorder with distributed abnormalities in the brain's motor network. Prior studies established the potential for repetitive transcranial magnetic stimulation (rTMS) to either premotor cortex (PMC) or primary somatosensory cortex (PSC) to modify symptoms. However, clinical effects have been modest with limited understanding of the neural mechanisms hindering therapeutic advancement of this promising approach.
View Article and Find Full Text PDFTobacco-related deaths remain the leading cause of preventable death in the United States. Veterans suffering from posttraumatic stress disorder (PTSD)-about 11% of those receiving care from the Department of Veterans Affairs (VA)-have triple the risk of developing tobacco use disorder (TUD). The most efficacious strategies being used at the VA for smoking cessation only result in a 23% abstinence rate, and veterans with PTSD only achieve a 4.
View Article and Find Full Text PDFBackground: Transcranial magnetic stimulation (TMS) is used to treat a range of brain disorders by inducing an electric field (E-field) in the brain. However, the precise neural effects of TMS are not well understood. Nonhuman primates (NHPs) are used to model the impact of TMS on neural activity, but a systematic method of quantifying the induced E-field in the cortex of NHPs has not been developed.
View Article and Find Full Text PDFBiol Psychiatry
March 2024
The modeling of transcranial magnetic stimulation (TMS)-induced electric fields (E-fields) is a versatile technique for evaluating and refining brain targeting and dosing strategies, while also providing insights into dose-response relationships in the brain. This review outlines the methodologies employed to derive E-field estimations, covering TMS physics, modeling assumptions, and aspects of subject-specific head tissue and coil modeling. We also summarize various numerical methods for solving the E-field and their suitability for various applications.
View Article and Find Full Text PDFHigh-frequency repetitive transcranial magnetic stimulation (rTMS) to the left dorsolateral prefrontal cortex (L-DLPFC) shows promise as a treatment for treatment-resistant depression in adolescents. Conventional rTMS coil placement strategies include the 5 cm, the Beam F3, and the magnetic resonance imaging (MRI) neuronavigation methods. The purpose of this study was to use electric field (E-field) models to compare the three targeting approaches to a computational E-field optimization coil placement method in depressed adolescents.
View Article and Find Full Text PDFNeuropsychopharmacology
January 2024
We have known for nearly a century that triggering seizures can treat serious mental illness, but what we do not know is why. Electroconvulsive Therapy (ECT) works faster and better than conventional pharmacological interventions; however, those benefits come with a burden of side effects, most notably memory loss. Disentangling the mechanisms by which ECT exerts rapid therapeutic benefit from the mechanisms driving adverse effects could enable the development of the next generation of seizure therapies that lack the downside of ECT.
View Article and Find Full Text PDFBackground: A promising treatment option for adolescents with treatment-resistant depression is high-frequency repetitive transcranial magnetic stimulation (rTMS) delivered to the left dorsolateral prefrontal cortex (L-DLPFC). Conventional coil placement strategies for rTMS in adults include the 5-cm rule, the Beam F3 method, and the magnetic resonance imaging (MRI) neuronavigation method. The purpose of this study was to compare the three targeting approaches to a computational E-field optimization coil placement method in depressed adolescents.
View Article and Find Full Text PDFTranscranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation technique that uses a coil to induce an electric field (E-field) in the brain and modulate its activity. Many applications of TMS call for the repeated execution of E-field solvers to determine the E-field induced in the brain for different coil placements. However, the usage of solvers for these applications remains impractical because each coil placement requires the solution of a large linear system of equations.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) can modulate brain function via an electric field (E-field) induced in a brain region of interest (ROI). The ROI E-field can be computationally maximized and set to match a specific reference using individualized head models to find the optimal coil placement and stimulus intensity. However, the available software lacks many practical features for prospective planning of TMS interventions and retrospective evaluation of the experimental targeting accuracy.
View Article and Find Full Text PDFThe current study explored the judgment of communicative appropriateness while processing a dialogue between two individuals. All stimuli were presented as audio-visual as well as audio-only vignettes and 24 young adults reported their social impression (appropriateness) of literal, blunt, sarcastic, and teasing statements. On average, teasing statements were rated as more appropriate when processing audio-visual statements compared to the audio-only version of a stimuli, while sarcastic statements were judged as less appropriate with additional visual information.
View Article and Find Full Text PDFBackground: Online repetitive transcranialmagnetic stimulation (rTMS) has been shown to modulate working memory (WM) performance in a site-specific manner, with behavioral improvements due to stimulation of the dorsolateral prefrontal cortex (DLPFC), and impairment from stimulation to the lateral parietal cortex (LPC). Neurobehavioral studies have demonstrated that subprocesses of WM allowing for the maintenance and manipulation of information in the mind involve unique cortical networks. Despite promising evidence of modulatory effects of rTMS on WM, no studies have yet demonstrated distinct modulatory control of these two subprocesses.
View Article and Find Full Text PDFImpaired executive functions in ADHD are associated with hypoactivity of the right inferior frontal gyrus (IFG). This region was targeted via repetitive applications of anodal, high-definition transcranial direct current simulation (HD-tDCS) on five consecutive days in 33 ADHD patients (10-17years) and in a healthy control group (n=13, only sham). Patients received either sham (n=13) or verum tDCS with 0.
View Article and Find Full Text PDFComputational modeling and human studies suggest that transcranial alternating current stimulation (tACS) modulates alpha oscillations by entrainment. Yet, a direct examination of how tACS interacts with neuronal spiking activity that gives rise to the alpha oscillation in the thalamo-cortical system has been lacking. Here, we demonstrate how tACS entrains endogenous alpha oscillations in head-fixed awake ferrets.
View Article and Find Full Text PDFBackground: During transcranial magnetic stimulation (TMS) a coil placed on the scalp is used to non-invasively modulate activity of targeted brain networks via a magnetically induced electric field (E-field). Ideally, the E-field induced during TMS is concentrated on a targeted cortical region of interest (ROI). Determination of the coil position and orientation that best achieve this objective presently requires a large computational effort.
View Article and Find Full Text PDFInt Conf Pervasive Technol Relat Assist Environ
June 2020
A deep neural network (DNN) that can reliably model muscle responses from corresponding brain stimulation has the potential to increase knowledge of coordinated motor control for numerous basic science and applied use cases. Such cases include the understanding of abnormal movement patterns due to neurological injury from stroke, and stimulation based interventions for neurological recovery such as paired associative stimulation. In this work, potential DNN models are explored and the one with the minimum squared errors is recommended for the optimal performance of the M2M-Net, a network that maps transcranial magnetic stimulation of the motor cortex to corresponding muscle responses, using: a finite element simulation, an empirical neural response profile, a convolutional autoencoder, a separate deep network mapper, and recordings of multi-muscle activation.
View Article and Find Full Text PDFDespite the widespread use of transcranial magnetic stimulation (TMS) in research and clinical care, the dose-response relations and neurophysiological correlates of modulatory effects remain relatively unexplored. To fill this gap, we studied modulation of visual processing as a function of TMS parameters. Our approach combined electroencephalography (EEG) with application of single pulse TMS to visual cortex as participants performed a motion perception task.
View Article and Find Full Text PDFThe perception of visual motion is dependent on a set of occipitotemporal regions that are readily accessible to neuromodulation. The current study tested if paired-pulse Transcranial Magnetic Stimulation (ppTMS) could modulate motion perception by stimulating the occipital cortex as participants viewed near-threshold motion dot stimuli. In this sham-controlled study, fifteen subjects completed two sessions.
View Article and Find Full Text PDFThe process of manipulating information within working memory is central to many cognitive functions, but also declines rapidly in old age. Improving this process could markedly enhance the health-span in older adults. The current pre-registered, randomized and placebo-controlled study tested the potential of online repetitive transcranial magnetic stimulation (rTMS) applied at 5 Hz over the left lateral parietal cortex to enhance working memory manipulation in healthy elderly adults.
View Article and Find Full Text PDFObjective: To investigate whether the effects of HD-tDCS and conventional tDCS of the right IFG are superior to the effects of sham stimulation for the improvement of working memory performance in ADHD.
Methods: 15 ADHD patients between 10 and 16 years underwent three tDCS sessions in which conventional, HD and sham tDCS of the right IFG were applied. In all sessions a 2-back working memory task was solved and EEG was recorded.