Publications by authors named "Monique Topp"

Mutant isocitrate dehydrogenase (mIDH) inhibition significantly improves progression-free survival in patients with mIDH WHO grade 2 glioma; however, a large proportion of patients will progress, and mechanisms of adaptation to mIDH inhibition remain poorly understood. Perioperative studies with evaluation of paired pre- and post-treatment samples enable detailed understanding of drug response, facilitating biomarker development, but are rare in glioma owing to safety and cost concerns. Here we conducted a single-arm, open-label feasibility perioperative trial in patients with mIDH1 low-grade glioma, treatment naive to radiation and chemotherapy, with safusidenib (AB-218/DS-1001b), an orally available small-molecule inhibitor of mIDH1.

View Article and Find Full Text PDF

This is a single arm, open label perioperative trial to assess the feasibility, pharmacokinetics and pharmacodynamics of treatment with safusidenib following biopsy, and prior to surgical resection in patients with mutated glioma who have not received radiation therapy or chemotherapy. Fifteen participants will receive treatment in two parts. First, biopsy followed by one cycle (28 days) of safusidenib, an orally available, small molecular inhibitor of mutated IDH1, then maximal safe resection of the tumor (Part A).

View Article and Find Full Text PDF

Background: Phase 1 oncology trials provide access to new therapies and may improve cancer outcomes. Phase 1 trials conducted in the Asian-Pacific region are increasing at a faster rate than the global trend. This study aimed to describe the changing landscape of phase 1 oncology trials in Australia in the last decade.

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) pathway signaling pathway is one of the most commonly mutated pathways in human cancers. In particular, BRAF alterations result in constitutive activation of the rapidly accelerating fibrosarcoma-extracellular signal-regulated kinase-MAPK significant pathway, leading to cellular proliferation, survival, and dedifferentiation. The role of BRAF mutations in oncogenesis and tumorigenesis has spurred the development of targeted agents, which have been successful in treating many adult cancers.

View Article and Find Full Text PDF

Approximately a quarter of men with metastatic castrate resistant prostate cancer (mCRPC) have alterations in homologous recombination repair (HRR). These patients exhibit enhanced sensitivity to poly(ADP-ribose) polymerase (PARP) inhibitors. Leveraging the synthetic lethality between PARP inhibition and HRR deficiency, studies have established marked clinical benefit and a survival advantage from PARP inhibitors (PARPi) in mCRPC, most notably in cancers with alterations.

View Article and Find Full Text PDF

Early relapse after platinum chemotherapy in epithelial ovarian cancer (EOC) portends poor survival. A-priori identification of platinum resistance is therefore crucial to improve on standard first-line carboplatin-paclitaxel treatment. The DNA repair pathway homologous recombination (HR) repairs platinum-induced damage, and the HR recombinase RAD51 is overexpressed in cancer.

View Article and Find Full Text PDF

Epithelial ovarian cancer (EOC) is a complex disease comprising discrete histological and molecular subtypes, for which survival rates remain unacceptably low. Tailored approaches for this deadly heterogeneous disease are urgently needed. Efflux pumps belonging to the ATP-binding cassette (ABC) family of transporters are known for roles in both drug resistance and cancer biology and are also highly targetable.

View Article and Find Full Text PDF

Accurately identifying patients with high-grade serous ovarian carcinoma (HGSOC) who respond to poly(ADP-ribose) polymerase inhibitor (PARPi) therapy is of great clinical importance. Here we show that quantitative BRCA1 methylation analysis provides new insight into PARPi response in preclinical models and ovarian cancer patients. The response of 12 HGSOC patient-derived xenografts (PDX) to the PARPi rucaparib was assessed, with variable dose-dependent responses observed in chemo-naive BRCA1/2-mutated PDX, and no responses in PDX lacking DNA repair pathway defects.

View Article and Find Full Text PDF

Introduction: Improvement in the ability to target underlying drivers and vulnerabilities of high-grade serous ovarian cancer (HG-SOC) requires the development of molecularly annotated pre-clinical models reflective of clinical responses.

Methods: We generated patient-derived xenografts (PDXs) from consecutive, chemotherapy-naïve, human HG-SOC by transplanting fresh human HG-SOC fragments into subcutaneous and intra-ovarian bursal sites of NOD/SCID IL2Rγ(null) recipient mice, completed molecular annotation and assessed platinum sensitivity.

Results: The success rate of xenografting was 83%.

View Article and Find Full Text PDF