Publications by authors named "Monika Mahajan"

The shoot apical meristem (SAM) of higher plants comprises distinct functional zones. The central zone (CZ) is located at the meristem summit and harbors pluripotent stem cells. Stem cells undergo cell division within the CZ and give rise to descendants, which enter the peripheral zone (PZ) and become recruited into lateral organs.

View Article and Find Full Text PDF

Demographic outbursts and increased food demands invoke excessive use of pesticides in the agricultural field for increasing productivity which leads to the relentless decline of riverine health and its tributaries. These tributaries are connected to a plethora of point and non-point sources that transport pollutants including pesticides into the Ganga river's mainstream. Simultaneous climate change and lack of rainfall significantly increase pesticide concentration in the soil and water matrix of the river basin.

View Article and Find Full Text PDF

Cadmium (Cd), a non-essential trace element, it's intrusion in groundwater has ubiquitous implications on the environment and human health. This review is an approach to comprehensively emphasize on i) chemistry and occurrence of Cd in groundwater and its concomitant response on human health ii) sustainable Cd remediation techniques, iii) and associated costs. Current study is depending on meta-analysis of Cd contaminations in groundwater and discusses its distributions around the globe.

View Article and Find Full Text PDF

Transcriptional control of gene expression is an exquisitely regulated process in both animals and plants. Transcription factors (TFs) and the regulatory networks that drive the expression of TF genes in epidermal and subepidermal cell layers in Arabidopsis are unexplored. Here, we identified 65 TF genes enriched in the epidermal and subepidermal cell layers of the shoot apical meristem (SAM).

View Article and Find Full Text PDF

Understanding how the distinct cell types of the shoot apical meristem (SAM) withstand ultraviolet radiation (UVR) stress can improve cultivation of plants in high-UVR environments. Here, we show that UV-B irradiation selectively kills epidermal and niche cells in the shoot apex. Plants harboring a mutation in () are tolerant to UV-B.

View Article and Find Full Text PDF

In higher plants, the cells that form aboveground tissues and organs are derived from the shoot apical meristem (SAM). SAM is dynamic in nature and divided into central zone (CZ), peripheral zone (PZ), and rib meristem (RM). Stem cells reside in the CZ, and their progenitors differentiate to form lateral organs in PZ and stem tissue in RM.

View Article and Find Full Text PDF

Culture-negative bacteraemia has been an enigmatic entity with respect to its aetiological agents. In an attempt to actively identify those positive blood cultures that escape isolation and detection on routine workflow, an additional step of MALDI-TOF MS (matrix-assisted laser desorption ionization-time of flight mass spectrometry) based detection was carried out directly from the flagged blood culture bottles. Blood samples from 200 blood culture bottles that beeped positive with automated (BACTEC) system and showed no growth of organism on routine culture media, were subjected to analysis by MALDI-TOF MS.

View Article and Find Full Text PDF

Unilateral condylar hyperplasia is an uncommon condition with unknown etiology which causes overdevelopment of condyle leading to facial asymmetry, mandibular deviation, malocclusion, and articulation dysfunction. Two Indian families with unilateral condylar hyperplasia are presented where the similar abnormality was also detected in one of their parents. The condylar hyperplasia in these two families indicates that mandibular condylar hyperplasia could be genetic in origin.

View Article and Find Full Text PDF

In plants, epigenetic changes have been identified as regulators of developmental events during normal growth as well as environmental stress exposures. Flavonoid biosynthetic and antioxidant pathways play a significant role in plant defence during their exposure to environmental cues. The aim of this study was to unravel whether genes encoding enzymes of flavonoid biosynthetic and antioxidant pathways are under epigenetic regulation, particularly DNA methylation, during salt stress.

View Article and Find Full Text PDF

Flavan-3-ols are the major flavonoids present in tea (Camellia sinensis) leaves. These are known to have antioxidant and free radical scavenging properties in vitro. Flavanone 3-hydroxylase is considered to be an important enzyme of flavonoid pathway leading to accumulation of flavan-3-ols in tea.

View Article and Find Full Text PDF

One mutant transgenic line displaying homeotic conversion of sepals to petals with other phenotypic aberrations was selected and characterized at molecular level. The increased transcript level of gene encoding anthocyanidin synthase and petal specific class B genes, GLOBOSA and DEFECIENS in sepals of mutant line may be responsible for its homeotic conversion to petaloid organs. While characterizing this mutant line for locus identification, T-DNA was found to be inserted in 3' untranslated region of promoter of class B MADS box gene, GLOBOSA.

View Article and Find Full Text PDF

DNA methylation is known as an epigenetic modification that affects gene expression in plants. Variation in CpG methylation behavior was studied in two natural horse gram (Macrotyloma uniflorum [Lam.] Verdc.

View Article and Find Full Text PDF

Small RNAs (sRNAs) are 18-30 nt non-coding regulatory elements found in diverse organisms, which were initially identified as small double-stranded RNAs in Caenorhabditis elegans. With the development of new and improved technologies, sRNAs have also been identified and characterized in plant systems. Among them, micro RNAs (miRNAs) and small interfering RNAs (siRNAs) are found to be very important riboregulators in plants.

View Article and Find Full Text PDF

Flavonoids are synthesized by phenylpropanoid pathway. They are known to participate in large number of physiological and biochemical processes in plants. Parthenocarpy and male sterility has earlier been reported by silencing chalcone synthase (CHS) encoding gene.

View Article and Find Full Text PDF