Publications by authors named "Monica Montanari"

Bisphosphonates (BPs) are drugs used to cure metabolic diseases like osteoporosis and oncological conditions, such as multiple myeloma and bone metastases. The pharmacological activity of these compounds is mediated by their capacity to induce a systemic osteoclast depletion, finally resulting in reduced bone resorption. In spite of their efficacy, the clinical application of BPs is sometimes associated with a frightening side effect known as osteonecrosis of the jaw (ONJ).

View Article and Find Full Text PDF

Bisphosphonates (BPs) are successfully used to cure a number of diseases characterized by a metabolic reduction in bone density, such as Osteoporosis, or a neoplastic destruction of bone tissue, such as multiple myeloma and bone metastases. These drugs exert their therapeutic effect by causing a systemic osteoclast depletion that, in turn, is responsible for reduced bone resorption. Unfortunately, in addition to their beneficial activity, BPs can also determine a frightening side effect known as osteonecrosis of the jaw (ONJ).

View Article and Find Full Text PDF

After amputation, granular hemocytes infiltrate the blastema of regenerating cephalic tentacles of the freshwater snail . Here, the circulating phagocytic hemocytes were chemically depleted by injecting the snails with clodronate liposomes, and the effects on the cephalic tentacle regeneration onset and on -Hemocyanin, -transglutaminase (-TG) and -Allograft Inflammatory Factor-1 (-AIF-1) gene expressions were investigated. Flow cytometry analysis demonstrated that clodronate liposomes targeted large circulating hemocytes, resulting in a transient decrease in their number.

View Article and Find Full Text PDF

The hematopoietic U937 cells are able to differentiate into monocytes, macrophages, or osteoclasts when stimulated, respectively, with vitamin D3 (VD3), phorbol 12-myristate 13-acetate (PMA) or PMA plus VD3. We have previously demonstrated that magnesium (Mg) strongly potentiates the osteoclastic differentiation of U937 cells. In this study, we investigated whether such an effect may be ascribed to a capacity of Mg to modulate the monocyte differentiation of U937 cells and/or to an ability of Mg and VD3 to act directly and independently on the early phases of the osteoclastic differentiation.

View Article and Find Full Text PDF

The majority of mutations in rhodopsin (RHO) cause misfolding of the protein and has been linked to degeneration of photoreceptor cells in the retina. A lot of attention has been set on targeting ER stress for the development of new therapies for inherited retinal degeneration caused by mutations in the RHO gene. Nevertheless, the cell death pathway activated by RHO misfolded protein is still debated.

View Article and Find Full Text PDF

Calcium ions play a critical role in neuronal cell death. Pigment epithelium-derived factor (PEDF) is a promising neuroprotective protein for photoreceptor cells but the mechanisms mediating its effects against retinal degeneration are still not well characterized. We addressed this question in the rd1 degenerating mouse retina that bears a mutation in the Pde6b gene encoding one subunit of the phosphodiesterase enzyme.

View Article and Find Full Text PDF

Recently, solid lipid nanoparticles (SLNs) have attracted increasing attention owing to their potential as an oral delivery system, promoting intestinal absorption in the lymphatic circulation which plays a role in disseminating metastatic cancer cells and infectious agents throughout the body. SLN features can be exploited for the oral delivery of theranostics. Therefore, the aim of this work was to design and characterise self-assembled lipid nanoparticles (SALNs) to encapsulate and stabilise iron oxide nanoparticles non-covalently coated with heparin (Fe@hepa) as a model of a theranostic tool.

View Article and Find Full Text PDF

Mutations in rhodopsin (RHO) are a common cause of retinal dystrophy and can be transmitted by dominant or recessive inheritance. Clinical symptoms caused by dominant and recessive mutations in patients and animal models are very similar but the molecular mechanisms leading to retinal degeneration may differ. We characterized three murine models of retina degeneration caused by either Rho loss of function or expression of the P23H dominant mutation in Rho.

View Article and Find Full Text PDF
Article Synopsis
  • * Current gene and protein replacement methods are not effective in leukemic cells, leading researchers to explore "drug repurposing" as a promising alternative to find new uses for existing medications.
  • * The study found that amantadine can induce differentiation in AML cell lines towards monocyte-macrophage-like cells when combined with certain agents, suggesting it works by enhancing vitamin D receptor activity, thus revealing a new therapeutic potential for this existing drug.
View Article and Find Full Text PDF

Orosomucoid 1 (ORM1), also named Alpha 1 acid glycoprotein A (AGP-A), is an abundant plasma protein characterized by anti-inflammatory and immune-modulating properties. The present study was designed to identify a possible correlation between ORM1 and Vitamin D3 (1,25(OH)2D3), a hormone exerting a widespread effect on cell proliferation, differentiation and regulation of the immune system. In particular, the data described here indicated that ORM1 is a 1,25(OH)2D3 primary response gene, characterized by the presence of a VDRE element inside the 1kb sequence of its proximal promoter region.

View Article and Find Full Text PDF

Several advanced in vitro and in vivo studies have proved the broad potential of cationic solid lipid nanoparticles (SLN) as nonviral vectors. However, a few data are available about the correlation between lipid component of the SLN structure and in vitro performance in terms of cell tolerance and transfection efficiency on different cell lines. In this paper SLN were prepared using stearic acid as main lipid component, stearylamine as cationic agent and protamine as transfection promoter and adding phosphatidylcholine (PC), cholesterol (Chol) or both to obtain three different multicomponent SLN (SLN-PC, SLN-Chol and SLN-PC-Chol, respectively).

View Article and Find Full Text PDF

Background: The ability to efficiently cross cellular barriers and accomplish high-level transgene expression is a critical challenge to broad application of nonviral vectors, such as cationic solid lipid nanoparticles (SLN).

Aims: This study aims to design and characterize in vitro multicomposite SLN as a novel platform for pDNA delivery.

Results/discussion: The distribution of each component (stearic acid, stearylamine, phosphatidylcholine, cholesterol, protamine and Pluronic F68) in the SLN matrix was studied by electron spectroscopy for chemical analysis and NMR in order to establish its influence on SLN cytotoxicity and transfection efficiency.

View Article and Find Full Text PDF

Cationic solid lipid nanoparticles (SLN) have been recently proposed as non-viral vectors in systemic gene therapy. The aim of this study was to evaluate the effect of the protamine amount used as the transfection promoter in SLN-mediated gene delivery. Three protamine-SLN samples (Pro25, Pro100, and Pro200) prepared by adding increasing amounts of protamine were characterized for their size, zeta potential, and protamine loading level.

View Article and Find Full Text PDF

Polysaccharide microparticles for the oral administration of gentamicin were designed in order to obtain an increased drug absorption by means of microparticle transport across the intestinal epithelia. Alginate/chitosan microparticles with a size of ~2 μm were developed by spray-drying a water solution containing the drug complexed with the polyanionic alginate and subsequent alginate cross-linking process by calcium ions and chitosan. The pre-formulation study, performed by changing the concentration of both cross-linkers, led to the selection of the most suitable formulation which was assayed for its capacity to be translocated across intestinal epithelia, via both M cells contained in Follicle Associated Epithelium (FAE) of Peyer's patches and enterocytes of the mucosal epithelium.

View Article and Find Full Text PDF

Protamine has attracted much attention as DNA condenser and nuclear transfer enhancer although the excess of hydrophilicity and the strong DNA pack restrain its potentialities. In order to overcome this limitation, we added Protamine in the composition of solid lipid nanoparticles (SLN-Protamine) and we compared this carrier with the same kind of SLN containing Esterquat 1 instead of Protamine (SLN-EQ1). Carriers cytotoxicity was assessed on COS-I cells evaluating the cell cycle by propidium iodide test, while the transfection efficiency was studied using pEGFP as plasmid model.

View Article and Find Full Text PDF

Cationic solid lipid nanoparticles (SLN) are promising nonviral gene delivery carriers suitable for systemic administration. The objective of this study was to investigate the relationship between the composition of cationic SLN and their ability to condense plasmid DNA (pDNA) and to transfer it in neuroblastoma cells. The SLN were prepared by using stearic acid and stearylamine as lipid core along with Esterquart 1 (EQ1) or Protamine obtaining two samples (SLN-EQ1 and SLN-Protamine, respectively).

View Article and Find Full Text PDF

The cellular effects of a novel DNA-intercalating agent, the bipyridyl complex of platinum(II) with diphenyl thiourea, [Pt(bipy)(Ph(2)-tu)(2)]Cl(2), has been analyzed in the cisplatin (cDDP)-sensitive human ovarian carcinoma cell line, 2008, and its -resistant variant, C13* cells, in which the highest accumulation and cytotoxicity was found among six related bipyridyl thiourea complexes. We also show here that this complex causes reactive oxygen species to form and inhibits topoisomerase II activity to a greater extent in the sensitive than in the resistant line. The impairment of this enzyme led to DNA damage, as shown by the comet assay.

View Article and Find Full Text PDF

In this study, the mechanism of the internalization and the cellular distribution of 59 fluorescein conjugated PS-ODN (FITC-ODN) after transfection with different mixed lipidic vesicles/oligo complexes (lipoplexes) have been investigated. Mixed lipidic vesicles were prepared with one of the most used cationic lipid (DOTAP) and different amounts of a cholic acid (UDCA) to release the oligo into HaCaT cells. Using flow cytometry, the cellular uptake of the oligo was studied with and without different inhibitors able to block selectively the different pathways involved in the internalization mechanism.

View Article and Find Full Text PDF

Although a considerable number of reports indicate an involvement of the Hox-A10 gene in the molecular control of hemopoiesis, the conclusions of such studies are quite controversial given that they support, in some cases, a role in the stimulation of stem cell self-renewal and myeloid progenitor expansion, whereas in others they implicate this transcription factor in the induction of monocyte-macrophage differentiation. To clarify this issue, we analyzed the biological effects and the transcriptome changes determined in human primary CD34(+) hemopoietic progenitors by retroviral transduction of a full-length Hox-A10 cDNA. The results obtained clearly indicated that this homeogene is an inducer of monocyte differentiation, at least partly acting through the up-regulation of the MafB gene, recently identified as the master regulator of such a maturation pathway.

View Article and Find Full Text PDF

The relatively hydrophilic bile acid, ursodeoxycholic acid (UDCA), was used as an additive to DOTAP cationic liposomes to evaluate the effect on the cellular uptake of an oligonucleotide. Nuclear magnetic resonance studies were applied to estimate the relative amount of incorporated UDCA into the lipidic bilayers. DOTAP or DOTAP-UDCA vesicles (MixVes; DOTAP/UDCA molar ratios 1:0.

View Article and Find Full Text PDF

Cationic solid lipid nanoparticles (SLNs) have recently been suggested for non-viral gene delivery as a promising alternative to the liposomes. The aim of this study was to investigate the possibility to obtain re-dispersible cationic SLNs after a freeze-drying process in the absence of lyo- and/or cryoprotectors. The physical-chemical characteristics of cationic SLNs and their ability to bind gene material were investigated before and after the freeze-drying.

View Article and Find Full Text PDF

The MItf-Tfe family of basic helix-loop-helix leucine zipper (bHLH-Zip) transcription factors encodes four family members: MItf, Tfe3, TfeB and TfeC. In vitro, each protein of the family binds DNA in a homo- or heterodimeric form with other family members. Tfe3 is involved in chromosomal translocations recurrent in different tumors and it has been demonstrated, by in vivo studies, that it plays, redundantly with MItf, an important role in the process of osteoclast formation, in particular during the transition from mono-nucleated to multi-nucleated osteoclasts.

View Article and Find Full Text PDF

Transplantation of genetically modified hematopoietic stem cells (HSCs) has therapeutic potential for a variety of blood genetic disorders. Engraftment of HSCs, however, requires toxic myeloablative treatments, which render this approach questionable for non-life-threatening disorders. A potential alternative is the use of transgenes, which allows positive selection of HSCs in vivo.

View Article and Find Full Text PDF

The gene expression profile of CD34(-) hematopoietic stem cells (HSCs) and the correlations with their biological properties are still poorly understood. To address this issue, we used the DNA microarray technology to compare the expression profiles of different peripheral blood hemopoietic stem/progenitor cell subsets, lineage-negative (Lin(-)) CD34(-), Lin(-)CD34(+), and Lin(+)CD34(+) cells. The analysis of gene categories differentially expressed shows that the expression of CD34 is associated with cell cycle entry and metabolic activation, such as DNA, RNA, and protein synthesis.

View Article and Find Full Text PDF

Our previous studies demonstrated that intracellular polyamine depletion blocked HL-60 cell apoptosis triggered by exposure to 2-deoxy-d-ribose (dRib). Here, we have characterized the intracellular events underlying the apoptotic effects of dRib and the involvement of polyamines in these effects. Treatment of HL-60 cells with dRib induces loss of mitochondrial transmembrane potential, radical oxygen species production, intracellular glutathione depletion and translocation of Bax from cytosol to membranes.

View Article and Find Full Text PDF