Plants adapt to balance growth-defense tradeoffs in response to both biotic and abiotic stresses. Green leaf volatiles (GLVs) are released after biotic and abiotic stresses and function as damage-associated signals in plants. Although, GLVs enter plants primarily through stomata, the role of stomatal regulation on the kinetics of GLV uptake remains largely unknown.
View Article and Find Full Text PDFPremise: Plants produce an array of floral olfactory and visual cues to attract pollinators, including volatile organic compounds (VOC), which mediate plant-pollinator interactions and may be influenced by herbivory and neighboring plants. Consequently, these factors may affect plant fitness by disrupting pollination. However, most evidence comes from controlled experiments, limiting our understanding of how VOCs function in natural populations.
View Article and Find Full Text PDFShelter-building insects are important ecosystem engineers, playing critical roles in structuring arthropod communities. Nonetheless, the influence of leaf shelters and arthropods on plant-associated microbiota remains largely unexplored. Arthropods that visit or inhabit plants can contribute to the leaf microbial community, resulting in significant changes in plant-microbe interactions.
View Article and Find Full Text PDFAquatic detritivores are highly sensitive to changes in temperature and leaf litter quality caused by increases in atmospheric CO. While impacts on detritivores are evident at the organismal and population level, the mechanisms shaping ecological communities remain unclear. Here, we conducted field and laboratory experiments to examine the interactive effects of changes in leaf litter quality, due to increasing atmospheric CO, and warming, on detritivore survival (at both organismal and community levels) and detritus consumption rates.
View Article and Find Full Text PDFPlants perceive environmental stresses as whole organisms via distant signals conveying danger messages through their vasculature. In parallel to vascular transport, airborne plant volatile compounds, including green leaf volatiles (GLVs), can bypass the lack of vascular connection. However, some small volatile compounds move through the vasculature; such vascular transport is little known about GLVs.
View Article and Find Full Text PDFBiotic and abiotic factors may individually or interactively disrupt plant-pollinator interactions, influencing plant fitness. Although variations in temperature and precipitation are expected to modify the overall impact of predators on plant-pollinator interactions, few empirical studies have assessed if these weather conditions influence anti-predator behaviors and how this context-dependent response may cascade down to plant fitness. To answer this question, we manipulated predation risk (using artificial spiders) in different years to investigate how natural variation in temperature and precipitation may affect diversity (richness and composition) and behavioral (visitation) responses of flower-visiting insects to predation risk, and how these effects influence plant fitness.
View Article and Find Full Text PDFThe host-associated microbiome is vital to host immunity and pathogen defense. In aquatic ecosystems, organisms may interact with environmental bacteria to influence the pool of potential symbionts, but the effects of these interactions on host microbiome assembly and pathogen resistance are unresolved. We used replicated bromeliad microecosystems to test for indirect effects of arthropod-bacteria interactions on host microbiome assembly and pathogen burden, using tadpoles and the fungal amphibian pathogen Batrachochytrium dendrobatidis as a model host-pathogen system.
View Article and Find Full Text PDFHerbivore-induced plant defences regulated by the phytohormones jasmonic acid (JA) and salicylic acid (SA) are predicted to influence herbivore population dynamics, in part because they can operate in a density-dependent manner. While there is ample evidence that herbivore-induced plant responses affect individual performance and growth of herbivores, whether they scale-up to regulate herbivore population dynamics is still unclear. We evaluated the consequences of variation in plant defences and herbivore density on herbivore development, reproduction and density-dependent population growth.
View Article and Find Full Text PDFThe strength and outcome of mutualistic interactions can be highly dependent on the combination of traits of the species involved. Distinct foraging strategies (e.g.
View Article and Find Full Text PDFProc Biol Sci
September 2017
Plant quality and predators are important factors affecting herbivore population growth, but how they interact to regulate herbivore populations is not well understood. We manipulated jasmonate-induced plant resistance, exposure to the natural predator community and herbivore density to test how these factors jointly and independently affect herbivore population growth. On low-resistance plants, the predator community was diverse and abundant, promoting high predator consumption rates.
View Article and Find Full Text PDFInteractions between species can have cascading effects that shape subsequent interactions. For example, herbivory can induce plant defenses that affect subsequent interactions with herbivores, pathogens, mycorrhizae, and pollinators. Parasitic plants are present in most ecosystems, and play important roles in structuring communities.
View Article and Find Full Text PDFParasitic plants are common in many ecosystems, where they can structure community interactions and cause major economic damage. For example, parasitic dodder (Cuscuta spp.) can cause up to 80-100 % yield loss in heavily infested cranberry (Vaccinium macrocarpon) patches.
View Article and Find Full Text PDF1. The impact of predators on prey has traditionally been attributed to the act of consumption. Prey responses to the presence of the predator (non-consumptive effects), however, can be as important as predation itself.
View Article and Find Full Text PDFPlants are frequently attacked by both pathogens and insects, and an attack from one can induce plant responses that affect resistance to the other. However, we currently lack a predictive framework for understanding how pathogens, their vectors, and other herbivores interact. To address this gap, we have investigated the effects of a viral infection in the host plant on both its aphid vector and non-vector herbivores.
View Article and Find Full Text PDFSevere damage often provokes compensatory resprouting of plants, which commonly modify plant morphological and phenological traits. Rapid plant growth often results in poorly defended nutrient-rich foliage, which is more susceptible to foliar-chewing herbivores. It is less known how other guilds of arthropods are affected by plant regrowth.
View Article and Find Full Text PDF