Publications by authors named "Moin Uddin Maruf"

Machine learning interatomic potentials (MLIPs) provide a computationally efficient alternative to quantum mechanical simulations for predicting material properties. Message-passing graph neural networks, commonly used in these MLIPs, rely on local descriptor-based symmetry functions to model atomic interactions. However, such local descriptor-based approaches struggle with systems exhibiting long-range interactions, charge transfer, and compositional heterogeneity.

View Article and Find Full Text PDF