Publications by authors named "Mohammad Mahfuz Chowdhury"

Human cell reprogramming traditionally involves time-intensive, multistage, costly tissue culture polystyrene-based cell culture practices that ultimately produce low numbers of reprogrammed cells of variable quality. Previous studies have shown that very soft 2- and 3-dimensional hydrogel substrates/matrices (of stiffnesses ≤ 1 kPa) can drive ~2× improvements in human cell reprogramming outcomes. Unfortunately, these similarly complex multistage protocols lack intrinsic scalability, and, furthermore, the associated underlying molecular mechanisms remain to be fully elucidated, limiting the potential to further maximize reprogramming outcomes.

View Article and Find Full Text PDF

Organ-specific characteristic of endothelial cells (ECs) is crucial for specific adhesion of cancer cells to ECs, which is a key factor in the formation of organ-specific metastasis. In this study, we developed a coculture of TMNK-1 (immortalized liver sinusoidal ECs) with 10T1/2 (resembling hepatic stellate cells) to augment organ-specific characteristic of TMNK-1 and investigated adhesion of two pancreatic cancer cells (MIA-PaCa-2 and BxPC-3) in the culture. MIA-PaCa-2 and BxPC-3 adhesion in TMNK-1+10T1/ 2|coating culture (TMNK-1 monolayer over 10T1/2 layer on collagen coated surface) were similar.

View Article and Find Full Text PDF

In our previous studies, we observed that cell-secreted BMP4 had a prominent influence on mouse embryonic stem cell (mESC) behaviors in a membrane-based two-chambered microbioreactor (MB), but not in a macro-scale culture (6-well plate/6WP). In this study, we investigated how the physical aspects of these cultures regulated BMP4 signaling by developing mathematical models of the cultures. The models estimated signaling activity in the cultures by considering size of the undifferentiated mESC colonies and their growth, diffusion of BMP4, and BMP4 trafficking process in the colonies.

View Article and Find Full Text PDF

Cell-secreted soluble factor signaling in a diffusion dominant microenvironment plays an important role on early stage differentiation of pluripotent stem cells invivo. In this study, we utilized a membrane-based two-chambered microbioreactor (MB) to differentiate mouse embryonic stem cells (mESCs) in a diffusion dominant microenvironment of the top chamber while providing enough nutrient through the bottom chamber. Speculating that accumulated FGF4 in the small top chamber will augment neuronal differentiation in the MB culture, we first differentiated mESCs for 8 days by using a chemically optimized culture medium for neuronal induction.

View Article and Find Full Text PDF

Pluripotent stem cells are under the influence of soluble factors in a diffusion dominant in vivo microenvironment. In order to investigate the effects of secreted soluble factors on embryonic stem cell (ESC) behavior in a diffusion dominant microenvironment, we cultured mouse ESCs (mESCs) in a membrane-based two-chambered micro-bioreactor (MB). To avoid disturbing the cellular environment in the top chamber of the MB, only the culture medium of the bottom chamber was exchanged.

View Article and Find Full Text PDF