Front Med (Lausanne)
December 2024
Introduction: Neurodegenerative diseases, including Parkinson's, Alzheimer's, and epilepsy, pose significant diagnostic and treatment challenges due to their complexity and the gradual degeneration of central nervous system structures. This study introduces a deep learning framework designed to automate neuro-diagnostics, addressing the limitations of current manual interpretation methods, which are often time-consuming and prone to variability.
Methods: We propose a specialized deep convolutional neural network (DCNN) framework aimed at detecting and classifying neurological anomalies in MRI data.
Front Med (Lausanne)
July 2024
Epilepsy is one of the most frequent neurological illnesses caused by epileptic seizures and the second most prevalent neurological ailment after stroke, affecting millions of people worldwide. People with epileptic disease are considered a category of people with disabilities. It significantly impairs a person's capacity to perform daily tasks, especially those requiring focusing or remembering.
View Article and Find Full Text PDFThe deaf-mutes population always feels helpless when they are not understood by others and vice versa. This is a big humanitarian problem and needs localised solution. To solve this problem, this study implements a convolutional neural network (CNN), convolutional-based attention module (CBAM) to recognise Malaysian Sign Language (MSL) from images.
View Article and Find Full Text PDFBiosensor is a means to transmit some physical phenomena, like body temperature, pulse, respiratory rate, electroencephalogram (EEG), electrocardiogram (ECG), and blood pressure. Such transmission is performed via Wireless Medical Sensor Network (WMSN) while diagnosing patients remotely through Internet-of-Medical-Things (IoMT). The sensitive data transmitted through WMSN from IoMT over an insecure channel is vulnerable to several threats and needs proper attention to be secured from adversaries.
View Article and Find Full Text PDFBackground: Cephalometric analysis and measurements of skull parameters using X-Ray images plays an important role in predicating and monitoring orthodontic treatment. Manual analysis and measurements of cephalometric is considered tedious, time consuming, and subjected to human errors. Several cephalometric systems have been developed to automate the cephalometric procedure; however, no clear insights have been reported about reliability, performance, and usability of those systems.
View Article and Find Full Text PDFBMC Bioinformatics
May 2013
Background: Freshwater algae can be used as indicators to monitor freshwater ecosystem condition. Algae react quickly and predictably to a broad range of pollutants. Thus they provide early signals of worsening environment.
View Article and Find Full Text PDF