J Am Soc Mass Spectrom
September 2025
Achieving high throughput remains a challenge in MS-based proteomics for large-scale applications. We introduce SynchroSep-MS, a novel method for parallelized, label-free proteome analysis that leverages the rapid acquisition speed of modern mass spectrometers. This approach employs multiple liquid chromatography columns, each with an independent sample, simultaneously introduced into a single mass spectrometer inlet.
View Article and Find Full Text PDFMol Cell Proteomics
June 2025
The use of native mass spectrometry (MS) to land biological molecules for subsequent cryogenic electron microscopy (cryoEM) imaging and three-dimensional reconstruction has gained momentum in recent years as a means to overcome long-standing challenges posed by traditional cryoEM sample preparation. However, recent results obtained with this approach have been constrained by low resolution and the compaction of cryo-landed particles, likely due to dehydration during exposure to vacuum. Here, we describe a new sample preparation method that uses a laser integrated into a cryogenic soft-landing apparatus to liquefy precisely deposited amorphous ice, rehydrating particles, and restoring their solution structure prior to rapid revitrification via the thermal mass of the grid.
View Article and Find Full Text PDFAutologous vascular grafts, the only clinically approved option for small-diameter (<6 mm) revascularizations, require invasive harvesting and have limited availability and variable quality. To address these challenges, we develop a 3-mm-diameter artery graft by using arterial endothelial cells (AECs) derived from pluripotent stem cells (PSCs). After establishing technologies for pure AEC generation and expanded polytetrafluoroethylene (ePTFE) graft coating, we engineer artery grafts by seeding the inner lumen of ePTFE vascular grafts with either major histocompatibility complex (MHC) mismatched unmodified-wild-type (MHC-WT) AECs or MHC class I/II double knockout (MHC-DKO) AECs.
View Article and Find Full Text PDFPluripotent stem cells retain the developmental timing of their species of origin in vitro, an observation that suggests the existence of a cell-intrinsic developmental clock, yet the nature and machinery of the clock remain a mystery. We hypothesize that one possible component may lie in species-specific differences in the kinetics of transcriptional responses to differentiation signals. Using a liquid-handling robot, mouse and human pluripotent stem cells were exposed to identical neural differentiation conditions and sampled for RNA-sequencing at high frequency, every 4 or 10 minutes, for the first 10 hours of differentiation to test for differences in transcriptomic response rates.
View Article and Find Full Text PDFNeuroepithelial stem cells (NSC) from different anatomical regions of the embryonic neural tube's rostrocaudal axis can differentiate into diverse central nervous system tissues, but the transcriptional regulatory networks governing these processes are incompletely understood. Here, we measure region-specific NSC gene expression along the rostrocaudal axis in a human pluripotent stem cell model of early central nervous system development over a 72-h time course, spanning the hindbrain to cervical spinal cord. We introduce Escarole, a probabilistic clustering algorithm for non-stationary time series, and combine it with prior-based regulatory network inference to identify genes that are regulated dynamically and predict their upstream regulators.
View Article and Find Full Text PDFContractile to synthetic phenotypic switching of smooth muscle cells (SMCs) contributes to stenosis in vascular disease and vascular transplants. To generate more contractile SMCs, we performed a high-throughput differentiation screen using a MYH11-NLuc-tdTomato human embryonic stem cell reporter cell line. We identified RepSox as a factor that promotes differentiation of MYH11-positive cells by promoting NOTCH signaling.
View Article and Find Full Text PDFExp Biol Med (Maywood)
November 2017
The aim of the present study was to test sample reproducibility for model neural tissues formed on synthetic hydrogels. Human embryonic stem (ES) cell-derived precursor cells were cultured on synthetic poly(ethylene glycol) (PEG) hydrogels to promote differentiation and self-organization into model neural tissue constructs. Neural progenitor, vascular, and microglial precursor cells were combined on PEG hydrogels to mimic developmental timing, which produced multicomponent neural constructs with 3D neuronal and glial organization, organized vascular networks, and microglia with ramified morphologies.
View Article and Find Full Text PDFThe salamander has the remarkable ability to regenerate its limb after amputation. Cells at the site of amputation form a blastema and then proliferate and differentiate to regrow the limb. To better understand this process, we performed deep RNA sequencing of the blastema over a time course in the axolotl, a species whose genome has not been sequenced.
View Article and Find Full Text PDFHemogenic endothelium (HE) has been recognized as a source of hematopoietic stem cells (HSCs) in the embryo. Access to human HE progenitors (HEPs) is essential for enabling the investigation of the molecular determinants of HSC specification. Here, we show that HEPs capable of generating definitive hematopoietic cells can be obtained from human pluripotent stem cells (hPSCs) and identified precisely by a VE-cadherin(+)CD73(-)CD235a/CD43(-) phenotype.
View Article and Find Full Text PDFCombining high-mass-accuracy mass spectrometry, isobaric tagging and software for multiplexed, large-scale protein quantification, we report deep proteomic coverage of four human embryonic stem cell and four induced pluripotent stem cell lines in biological triplicate. This 24-sample comparison resulted in a very large set of identified proteins and phosphorylation sites in pluripotent cells. The statistical analysis afforded by our approach revealed subtle but reproducible differences in protein expression and protein phosphorylation between embryonic stem cells and induced pluripotent cells.
View Article and Find Full Text PDFWe re-examine the individual components for human embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) culture and formulate a cell culture system in which all protein reagents for liquid media, attachment surfaces and splitting are chemically defined. A major improvement is the lack of a serum albumin component, as variations in either animal- or human-sourced albumin batches have previously plagued human ESC and iPSC culture with inconsistencies. Using this new medium (E8) and vitronectin-coated surfaces, we demonstrate improved derivation efficiencies of vector-free human iPSCs with an episomal approach.
View Article and Find Full Text PDFProtein Expr Purif
September 2007
Shewanella oneidensis is of particular interest for research because of its unique ability to use a variety of metals as final respiratory electron acceptors and reduce them into insoluble oxides. A collection of monoclonal antibodies (mAbs) that were prepared towards Escherichia coli RNA polymerase (RNAP) was tested for reactivity with proteins extracted from S. oneidensis.
View Article and Find Full Text PDF