BMC Sports Sci Med Rehabil
October 2023
Background: Various neurocognitive tests have shown that cycling enhances cognitive performance compared to resting. Event-related potentials (ERPs) elicited by an oddball or flanker task have clarified the impact of dual-task cycling on perception and attention. In this study, we investigate the effect of cycling on cognitive recruitment during tasks that involve not only stimulus identification but also semantic processing and memory retention.
View Article and Find Full Text PDFBMC Sports Sci Med Rehabil
March 2021
Background: EEGs are frequently employed to measure cerebral activations during physical exercise or in response to specific physical tasks. However, few studies have attempted to understand how exercise-state brain activity is modulated by exercise intensity.
Methods: Ten healthy subjects were recruited for sustained cycle ergometer exercises at low and high resistance, performed on two separate days a week apart.
Deep brain stimulation (DBS) of the subthalamic nucleus (STN) has been used to alleviate symptoms of Parkinson's disease. During image-guided stereotactic surgery, signals from microelectrode recordings are used to distinguish the STN from adjacent areas, particularly from the substantia nigra pars reticulata (SNr). Neuronal firing patterns based on interspike intervals (ISI) are commonly used.
View Article and Find Full Text PDFJ Neurosci Methods
July 2008
Neuronal spike information can be used to correlate neuronal activity to various stimuli, to find target neural areas for deep brain stimulation, and to decode intended motor command for brain-machine interface. Typically, spike detection is performed based on the adaptive thresholds determined by running root-mean-square (RMS) value of the signal. Yet conventional detection methods are susceptible to threshold fluctuations caused by neuronal spike intensity.
View Article and Find Full Text PDFJ Neurosci Methods
February 2008
Spike information is beneficial to correlate neuronal activity to various stimuli or determine target neural area for deep brain stimulation. Data clustering based on neuronal spike features provides a way to separate spikes generated from different neurons. Nevertheless, some spikes are aligned incorrectly due to spike deformation or noise interference, thereby reducing the accuracy of spike classification.
View Article and Find Full Text PDFComput Methods Programs Biomed
May 2007
Heart rate (HR) variability derived from electrocardiogram (ECG) can be used to assess the function of the autonomic nervous system. HR exhibits various characteristics during different physical activities attributed to the altered autonomic mediation, where it is also beneficial to reveal the autonomic shift in response to physical-activity change. In this paper, the physical-activity-related HR behaviors were delineated using a portable ECG and body acceleration recorder based on a personal digital assistant and the smoothed pseudo Wigner-Ville distribution.
View Article and Find Full Text PDFThe heart rate (HR) exhibits various behavior patterns in different postures and during physical activities, whereas a conventional long-term analysis of HR variability has the confounding effect whether the subject was physically active or immobilized. A specially designed ambulatory recorder that simultaneously measures the electrocardiogram and body accelerations was used to study the short-term (< or =11 beats, alpha1) fractal correlation property and the approximate entropy (ApEn) of RR interval data during sleep, sitting and standing (passive standing or mild walking) levels and immediately after rising in the morning in 15 healthy subjects. The alpha1 exponent that increased from sleep to sitting to standing implies an increased correlation of HR dynamics, which is concomitant with an increased ratio of low-frequency power to high-frequency power (LF/HF) that is usually linked with an increased sympathetic activity.
View Article and Find Full Text PDFA portable data recorder was developed to parallel measure the electrocardiogram and body accelerations. A multilayer fuzzy clustering algorithm was proposed to classify the physical activity based on body accelerations. Discrete wavelet transform was incorporated to retrieve time-varying characteristics of heart rate variability under different physical activities.
View Article and Find Full Text PDF