High-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but examples reported to date exhibit limited stability and processability. In this work, we designed the first tetraradical based on an oxoverdazyl core and nitronyl nitroxide radicals and successfully synthesized it using a palladium-catalyzed cross-coupling reaction of an oxoverdazyl radical bearing three iodo-phenylene moieties with a gold(I) nitronyl nitroxide-2-ide complex in the presence of a recently developed efficient catalytic system. The molecular and crystal structures of the tetraradical were confirmed by single crystal X-ray diffraction analysis.
View Article and Find Full Text PDFHigh-spin organic tetraradicals with significant intramolecular exchange interactions have high potential for advanced technological applications and fundamental research, but those synthesized to date possess limited stability and processability. In this work, we have designed a tetraradical based on the Blatter's radical and nitronyl nitroxide radical moieties and successfully synthesized it by using the palladium-catalyzed cross-coupling reaction of a triiodo-derivative of the 1,2,4-benzotriazinyl radical with gold(I) nitronyl nitroxide-2-ide complex in the presence of a newly developed efficient catalytic system. The molecular and crystal structure of the tetraradical was confirmed by X-ray diffraction analysis.
View Article and Find Full Text PDFInverted perovskite solar cells with a p-i-n configuration have attracted considerable attention from the research community because of their simple design, insignificant hysteresis, improved operational stability, and low-temperature fabrication technology. However, this type of device is still lagging behind the classical n-i-p perovskite solar cells in terms of its power conversion efficiency. The performance of p-i-n perovskite solar cells can be increased using appropriate charge transport and buffer interlayers inserted between the main electron transport layer and top metal electrode.
View Article and Find Full Text PDFThe concept of using redox-active ligands, which has become extremely widespread in organometallic chemistry, is often considered from 'their effect on the metal center properties' point of view and 'how to modify the ligands'. In this paper, we present the reverse side of this effective approach - a dramatic change of redox properties of ligands under the influence of a redox-inert metal. Germanium derivatives based on 2,3-dihydroxynaphthalene (1) and ,'-bidentate ligands, namely 2,2'-bipyridine (2) and 1,10-phenanthroline (3), were obtained and characterized by CV, UV-vis spectroscopy, DFT calculations and in the case of 3 X-ray diffraction.
View Article and Find Full Text PDFJ Org Chem
April 2022
New antioxidants are commonly evaluated via two main approaches, i.e., the ability to donate an electron and the ability to intercept free radicals.
View Article and Find Full Text PDFVarious forms of germanium and germanium-containing compounds and materials are actively investigated as energy-intensive alternatives to graphite as the anode of lithium-ion batteries. The most accessible form-germanium dioxide-has the structure of a 3D polymer, which accounts for its rapid destruction during cycling, and requires the development of further approaches to the production of nanomaterials and various composites based on it. For the first time, we propose here the strategy of using 2-carboxyethylgermanium sesquioxide ([O GeCH CH CO H] , 2-CEGS), in lieu of GeO , as a promising, energy-intensive, and stable new source system for building lithium-ion anodes.
View Article and Find Full Text PDF3,5-di-tert-Butylcatecholate (DTBC) germanium complexes (DTBC)2Ge[Py(CN)n]2 (n = 0…2) have been synthesized from GeO2, 3,5-di-tert-butylcatechol and cyano-substituted pyridines Py(CN)n and characterized by elemental analysis, NMR, IR and UV-VIS spectroscopy. The structure of 1 (with 4-cyanopyridine) has been determined by X-ray single crystal analysis. UV-VIS spectra have shown that these complexes are stable in CH3CN, toluene and CH2Cl2 solutions; in contrast, they are rapidly decomposed by dimethylformamide and tetrahydrofuran.
View Article and Find Full Text PDFWe have discovered synthetic access to β-hydroperoxy-β-peroxylactones via BF-catalyzed cyclizations of a variety of acyclic precursors, β-ketoesters and their silyl enol ethers, alkyl enol ethers, enol acetates, and cyclic acetals, with HO. Strikingly, independent of the choice of starting material, these reactions converge at the same β-hydroperoxy-β-peroxylactone products, i.e.
View Article and Find Full Text PDFBeilstein J Org Chem
August 2018
The iodo-oxyimidation of styrenes with the -hydroxyimide/I/hypervalent iodine oxidant system was proposed. Among the examined hypervalent iodine oxidants (PIDA, PIFA, IBX, DMP) PhI(OAc) proved to be the most effective; yields of iodo-oxyimides are 34-91%. A plausible reaction pathway includes the addition of an imide--oxyl radical to the double C=C bond and trapping of the resultant benzylic radical by iodine.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
April 2019
The many applications of photon upconversion-conversion of low-energy photons into high-energy photons-raises the question of the possibility of "electron upconversion". In this Review, we illustrate how the reduction potential can be increased by using the free energy of exergonic chemical reactions. Electron (reductant) upconversion can produce up to 20-25 kcal mol of additional redox potential, thus creating powerful reductants under mild conditions.
View Article and Find Full Text PDFTwenty six peroxides belonging to bridged 1,2,4,5-tetraoxanes, bridged 1,2,4-trioxolanes (ozonides), and tricyclic monoperoxides were evaluated for their in vitro antimalarial activity against Plasmodium falciparum (3D7) and for their cytotoxic activities against immortalized human normal fibroblast (CCD19Lu), liver (LO ), and lung (BEAS-2B) cell lines as well as human liver (HepG2) and lung (A549) cancer-cell lines. Synthetic ozonides were shown to have the highest cytotoxicity on HepG2 (IC =0.19-0.
View Article and Find Full Text PDFElectroreduction of the Henry reaction product - i.e. 1-phenyl-2-nitroethanol (PNE) - in 0.
View Article and Find Full Text PDF