The dilution effect hypothesis, which suggests greater host biodiversity can reduce infectious disease transmission, occurs in many systems but is not universal. Most studies only investigate the dilution of a single parasite in a community, but many host communities have multiple parasites circulating. We studied a zooplankton host community with prior support for a dilution effect in laboratory- and field-based studies of a fungal parasite, Metschnikowia bicuspidata.
View Article and Find Full Text PDFHuman activities simultaneously alter nutrient levels, habitat structure, and levels of parasitism. These activities likely have individual and joint impacts on food webs. Furthermore, there is particular concern that nutrient additions and changes to habitat structure might exacerbate the size of epidemics and impacts on host density.
View Article and Find Full Text PDFis a widespread pollinator parasite that commonly infects honeybees and wild pollinators, including bumblebees. Honeybees are highly competent hosts and previous work in experimental flight cages suggests can be transmitted during visitation to shared flowers. However, the relationship between floral visitation in the natural environment and the prevalence of among multiple bee species has not been explored.
View Article and Find Full Text PDFThe dilution effect hypothesis posits that increasing biodiversity reduces infectious disease transmission. Here, we propose that habitat quality might modulate this negative biodiversity-disease relationship. Habitat may influence pathogen prevalence directly by affecting host traits like nutrition and immune response (we coined the term "habitat-disease relationship" to describe this phenomenon) or indirectly by changing host biodiversity (biodiversity-disease relationship).
View Article and Find Full Text PDFMost pathogens are embedded in complex communities composed of multiple interacting hosts, but we are still learning how community-level factors, such as host diversity, abundance, and composition, contribute to pathogen spread for many host-pathogen systems. Evaluating relationships among multiple pathogens and hosts may clarify whether particular host or pathogen traits consistently drive links between community factors and pathogen prevalence. Pollinators are a good system to test how community composition influences pathogen spread because pollinator communities are extremely variable and contain several multi-host pathogens transmitted on shared floral resources.
View Article and Find Full Text PDFIn many cooperatively breeding animals, subordinate group members have lower reproductive capacity than dominant group members. Theory suggests subordinates may downregulate their reproductive capacity because dominants punish subordinates who maintain high fertility. However, there is little direct experimental evidence that dominants cause physiological suppression in subordinates.
View Article and Find Full Text PDF