Publications by authors named "Michael Zepp"

Paclitaxel (PTX) is a potent anticancer drug. However, PTX exhibits extremely poor solubility in aqueous solution along with severe side effects. Therefore, in this study, an inclusion complex was prepared between PTX and hydroxypropyl-β-cyclodextrin (HPβCD) by solvent evaporation to enhance the drug's solubility.

View Article and Find Full Text PDF

Endogenous peptide inhibitor for CXCR4 (EPI-X4) is a CXCR4 antagonist with potential for cancer therapy. It is a processed fragment of serum albumin from the hemofiltrate of dialysis patients. This study reports the efficacy of fifteen EPI-X4 derivatives in pancreatic cancer and lymphoma models.

View Article and Find Full Text PDF

Background: Ectopic expression of anticancer genes (ACGs) imposes antineoplastic effects on transformed cells. Clinically, reduced expression of these genes has been linked with poor prognosis, metastasis and chemo/radiotherapy resistance in cancers. Identifying expression pattern of ACGs is crucial to establish their prognostic and therapeutic relevance in colorectal cancer (CRC).

View Article and Find Full Text PDF

Background: Breast cancer is the most common malignancy among women worldwide. As survival rates increase, breast reconstruction and quality of life gain importance. Of all women undergoing breast reconstruction, approximately, 70% opt for silicone implants and 50% of those develop capsular contracture, the most prevalent long-term complication.

View Article and Find Full Text PDF

Riproximin (Rpx) is a type II ribosome-inactivating protein with specific anti-proliferative activity. It was purified from Ximenia by affinity chromatography using a resin coupled with lactosyl residues. The same technique facilitated isolation of proteins with lectin-like properties from human Suit2-007 and rat ASML pancreatic cancer cells, which were termed lactosyl-sepharose binding proteins (LSBPs).

View Article and Find Full Text PDF

Integrin β3 (ITGB3) is probably related to skeletal metastasis, which is the most frequent complication in breast cancer progression. We aimed to define its role and suitability as target for anti-metastatic therapy. We generated two MDA-MB-231 cell clones with conditional miRNA-mediated ITGB3 knockdown for analyzing the resulting effects in vitro regarding mRNA expression, proliferation and migration, as well the impact on skeletal metastasis in a nude rat model.

View Article and Find Full Text PDF
Article Synopsis
  • Liver metastasis occurs in around 50% of colorectal cancer patients, and targeting the chemokine receptor 5 (CCR5) may offer a new treatment approach.
  • The research involved using siRNAs and the FDA-approved drug maraviroc to study the effects of targeting CCR5 in various CRC models, both in cells and in an animal model that simulates liver metastasis.
  • Results demonstrated that inhibiting CCR5 reduced cancer cell growth and spread, while in vivo treatment with maraviroc significantly decreased liver metastasis, highlighting CCR5 as a promising therapeutic target for colorectal cancer.
View Article and Find Full Text PDF

Unlabelled: In normal cells, glycan binding proteins mediate various cellular processes upon recognition and binding to respective ligands. In tumor cells, these proteins have been associated with metastasis. Lactosyl-sepharose binding proteins (LSBPs) were isolated and identified in a workflow involving lactosyl affinity chromatography and label-free quantification mass spectrometry (LFQ MS).

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease, and novel therapeutic strategies are urgently needed. Recently, expression of the C-C chemokine receptor 5 (CCR5) and its ligands has been found to play an important role in cancer progression and metastasis. In this study, we blocked the CCR5 receptor by the FDA approved antagonist maraviroc (MVC) in Suit2-007 and MIA-PaCa-2 human PDAC cells.

View Article and Find Full Text PDF

High osteopontin (OPN) expression is linked to breast cancer bone metastasis. In this study we modulated osteopontin levels conditionally and investigated any related antineoplastic effects. Therefore, we established cell clones from human breast cancer MDA-MB-231 cells, in which the expression of OPN is regulated by the Tet-Off tet-off system.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) shows a high level of basal autophagy. Here we investigated the role of optineurin (OPTN) in PDAC cell lines, which is a prominent member of the autophagy system. To that purpose, mining of publically available databases showed that OPTN is highly expressed in PDAC and that high levels of expression are related to reduced survival.

View Article and Find Full Text PDF

Liver is the main target of pancreatic ductal adenocarcinoma (PDAC) metastasis. Here, a rat model was used for analysing gene expression modulations during liver colonization. ASML PDAC cells were injected to isogenic rats and re-isolated at various stages of liver colonization for RNA isolation or re-cultivation.

View Article and Find Full Text PDF

Purpose: Bone metastasis is observed in up to 70% of breast cancer patients. The currently available treatment options are palliative in nature. Chemokine receptor 5 (CCR5) has gained attention as therapeutic target in various malignancies.

View Article and Find Full Text PDF

Pancreatic adenocarcinoma is a highly aggressive malignancy with dismal prognosis and limited curative options. We investigated the influence of organ environments on gene expression in RNU rats by orthotopic and intraportal infusion of Suit2-007 cells into the pancreas, liver and lung respectively. Tumor tissues from these sites were analyzed by chip array and histopathology.

View Article and Find Full Text PDF

The TCGA database was analyzed to identify deregulation of cell cycle genes across 24 cancer types and ensuing effects on patient survival. Pan-cancer analysis showed that head and neck squamous cell carcinoma (HNSCC) ranks amongst the top four cancers showing deregulated cell cycle genes. Also, the median gene expression of all CDKs and cyclins in HNSCC patient samples was higher than that of the global gene expression.

View Article and Find Full Text PDF

Changes in glycosylation are salient features of cancer cells. Here, we report on the diagnostic and therapeutic properties of IDK1, an antibody against tumour associated, hypoglycosylated bone sialoprotein (hypo-BSP). The affinity of the rat monoclonal antibody IDK1 for hypo-BSP, as determined by microscale thermophoresis, was three orders of magnitude higher than for mature BSP, whereas the mouse monoclonal antibody used had similar affinity for both BSP forms.

View Article and Find Full Text PDF

Background: Riproximin, a type II ribosome-inactivating protein (RIP), has shown significant cytotoxic effects in diverse types of cancer cells. To better understand its therapeutic potential, elaborated investigations on the mechanistic aspects of riproximin deem crucial. In this study, we focused on riproximin-mediated changes in cellular properties and corresponding molecular pathways in breast cancer cells.

View Article and Find Full Text PDF

Increased bone sialoprotein (BSP) serum levels are related to breast cancer skeletal metastasis, but their relevance is unknown. We elucidated novel intracellular BSP functions by a conditional knockdown of BSP. Conditional MDA-MB-231 subclones were equipped with a novel gene expression cassette containing a tet-reg-ulated miRNA providing knockdown of BSP production.

View Article and Find Full Text PDF

Owing to aggressiveness and chemoresistance, pancreatic ductal adenocarcinoma (PDAC) is characterised by a poor prognosis. To address this disease-spe-cific dilemma we aimed to establish animal models, which can be used for identifying new specific tumor markers, as well as serving as tools for potential therapeutic approaches. From a panel of sixteen pancreatic cancer cell lines, two human (Suit2-007 and Suit2-013) and a rat (ASML) cell line were selected for their properties to grow in the liver of male RNU rats and mimic liver metastasis of PDAC.

View Article and Find Full Text PDF
Article Synopsis
  • Bone sialoprotein (BSP) and osteopontin (OPN) are key factors in breast cancer metastasis, and targeting them with siRNA significantly reduced cell migration and osteolytic lesions in a study with human breast cancer cells in rats.
  • The research highlighted the effectiveness of biodegradable nanoparticles (NP) for local siRNA delivery, which improved treatment outcomes and reduced skeletal lesions more efficiently compared to traditional systemic methods.
  • Overall, the study demonstrates that siRNA targeting can effectively impair cancer cell migration and offers a promising strategy for developing new treatments using nanoparticles.
View Article and Find Full Text PDF

Terminal progression of colorectal cancer (CRC) culminates in liver metastasis. To identify genes that are involved in the metastatic phenotype, cDNA microarrays were used to analyse mRNA expression profiles of colorectal carcinoma (CC)531 rat colon adenocarcinoma cells for changes related to their homing into the liver. Briefly, CC531 cells were intraportally implanted into the liver of Wag-Rij rats and re-isolated after 3, 6, 9, 14 and 21 days.

View Article and Find Full Text PDF

Efficient and specific delivery of antisenses (ASs) and protection of the sequences from degradation are critical factors for effective therapy. Sustained release nanoparticles (NP) offer increased resistance to nuclease degradation, increased amounts of AS uptake, and the possibility of control in dosing and sustained duration of AS administration. The biodegradable and biocompatible poly(D,L-lactic-co-glycolic acid) copolymer (PLGA) was utilized to encapsulate AS directed against osteopontin (OPN), which is a promising therapeutic target in mammary carcinoma.

View Article and Find Full Text PDF