Publications by authors named "Michael Reissner"

Configurations of composite metal oxide nanoparticles are typically far off their thermodynamic equilibrium state. As such they represent a versatile but so far overlooked source material for the intergranular solid-state chemistry inside ceramics. Here, it is demonstrated how the admixture of Fe and In ions to MgO nanoparticles, as achieved by flame spray pyrolysis, can be used to engage ion exsolution, phase separation, and subsequent spinel formation inside the network of diamagnetic and insulating MgO grains.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers have been focused on combining spin crossover (SCO) with guest incorporation properties, leading to the development of various spin crossover porous coordination polymers (SCO-PCPs), notably the Hofmann-type network, which is useful for (chemo)sensing applications.
  • Efforts to create larger cavity structures from the classic SCO-PCP framework {Fe(pz)[M(CN)]} (where M can be Ni, Pd, or Pt) have often resulted in compounds with weaker magnetic properties.
  • This study presents new wide-mesh-size SCO Hofmann-type networks with enhanced porosity and larger cavities, while maintaining key SCO behaviors such as hysteresis and guest-dependent spin-switching, successfully characterizing their structural
View Article and Find Full Text PDF

To increase the supramolecular cooperativity in Fe(ii) spin crossover materials based on N1-substituted tetrazoles, a series of ω-(1H-tetrazol-1-yl) carboxylic acids with chain-lengths of C2-C4 were synthesized. Structural characterization confirmed the formation of a strong hydrogen-bond network, responsible for enhanced cooperativity in the materials and thus largely complete spin-state transitions for the ligands with chain lenghts of C2 and C4. To complement the structural and magnetic investigation, electronic spectroscopy was used to investigate the spin-state transition.

View Article and Find Full Text PDF

Background: Fibrous chrysotile has been the most commonly applied asbestos mineral in a range of technical applications. However, it is toxic and carcinogenic upon inhalation. The chemical reactivity of chrysotile fiber surfaces contributes to its adverse health effects by catalyzing the formation of highly reactive hydroxyl radicals (HO) from HO.

View Article and Find Full Text PDF

The aim of the presented work is to combine luminescent porous silicon (PSi) with a ferromagnetic metal (Ni) to modify on the one hand the photoluminescence by the presence of metal deposits and on the other hand to influence the optical properties by an external magnetic field. The optical properties are investigated especially with respect to the wavelength-shift of the photoluminescence due to the metal filling. With increasing metal deposits within PSi the photoluminescence peak is blue-shifted and furthermore an increase of the intensity is observed.

View Article and Find Full Text PDF

Chrysotile asbestos is a soil pollutant in many countries. It is a carcinogenic mineral, partly due to its surface chemistry. In chrysotile, Fe and Fe substitute Mg octahedra (Fe[6]), and Fe substitutes Si tetrahedra (Fe[4]).

View Article and Find Full Text PDF

Criteria for a technologically relevant spin crossover (SCO) material include temperature and abruptness. A series of Fe(ii) - 1,3-bis((1H-tetrazol-1-yl)methyl)bicyclo[1.1.

View Article and Find Full Text PDF

1-(3-Halopropyl)-1H-tetrazoles and their corresponding Fe spin-crossover complexes have been investigated in a combined experimental and theoretical study. Halogen substitution was found to positively influence the spin transition, shifting the transition temperature about 70 K towards room temperature. Halogens located at the ω position were found to be too far away from the coordinating tetrazole moiety to have an electronic impact on the spin transition.

View Article and Find Full Text PDF

Two new ternary borides TM7Fe3B8 (TM = Nb, Ta) were synthesized by high-temperature thermal treatment of samples obtained by arc-melting. This new type of structure with space group P6/mmm, comprises TM slabs containing isolated planar hexagonal [B6] rings and iron centered TM columns in a Kagome type of arrangement. Chemical bonding analysis in Nb7Fe3B8 by means of the electron localizability approach reveals two-center interactions forming the Kagome net of Fe and embedded B, while weaker multicenter bonding present between this net and Nb atoms.

View Article and Find Full Text PDF

Unlabelled: Electrochemically deposited magnetic nanostructures arranged in a three-dimensional system are investigated with respect to their cross-talk between each other. The nanostructures are embedded in porous silicon templates with different morphologies which means pores offering dendritic growth of different strengths. An increase of the uniformity of the pores is concomitant with an increase of the smoothness of the metal deposits which strongly influences the magnetic behavior of the system.

View Article and Find Full Text PDF

Unlabelled: In this work, the magnetic properties of silicon nanotubes (SiNTs) filled with Fe3O4 nanoparticles (NPs) are investigated. SiNTs with different wall thicknesses of 10 and 70 nm and an inner diameter of approximately 50 nm are prepared and filled with superparamagnetic iron oxide nanoparticles of 4 and 10 nm in diameter. The infiltration process of the NPs into the tubes and dependence on the wall-thickness is described.

View Article and Find Full Text PDF

A modified phase-transfer-catalyst-assisted synthetic pathway was developed that widens the pool of accessible 1-substituted tetrazoles, which are possible ligands for iron(II) spin-crossover compounds. Within the family of α,ω-bis(tetrazol-1-yl)alkanes, a series of ligands and their respective iron(II) spin-crossover compounds were synthesized and structurally and spectroscopically characterized in the past. The classical route to prepare these ligands is based on the respective amino-precursors.

View Article and Find Full Text PDF

In the frame of this work, the aim was to create a superparamagnetic nanocomposite system with a maximized magnetic moment when magnetized by an external field and a blocking temperature far below room temperature. For this purpose, iron oxide nanoparticles of 3.8-, 5- and 8-nm size have been infiltrated into the pores of porous silicon.

View Article and Find Full Text PDF

Ferromagnetic nanostructures have been electrodeposited within the pores of porous silicon templates with average pore diameters between 25 and 60 nm. In this diameter regime, the pore formation in general is accompanied by dendritic growth resulting in rough pore walls, which involves metal deposits also offering a branched structure. These side branches influence the magnetic properties of the composite system not only due to modified and peculiar stray fields but also because of a reduced interpore spacing by the approaching of adjacent side pores.

View Article and Find Full Text PDF

Neutron powder diffraction was used to study the distribution of Co and Cr atoms over different lattice sites as well as the lattice parameters of sigma-phase compounds Co(100 - x)Cr(x) with x = 57.0, 62.7 and 65.

View Article and Find Full Text PDF

The reaction of btzmp (1,2-bis(tetrazol-1-yl)-2-methylpropane) with Fe(ClO4)2 generates a 1D polymeric species, [Fe(mu-btzmp)2(btzmp)2](ClO4)2, showing a steep spin transition (T(1/2) / =136 K and T(1/2) / =133 K) with a 3 K thermal hysteresis. The crystal structure at 100 and 200 K reveals that, in contrast to other bistetrazole based spin-transition systems such as [Fe(endi)3](BF4)2 and [Fe(btzp)3](ClO4)2, the present compound has only two ligands bridging the metallic centres, while the other two coordination positions are occupied by two mono-coordinated (non-bridging) btzmp ligands. This peculiarity confers an unprecedented crystal packing in the series of 1D bistetrazole based polymers.

View Article and Find Full Text PDF