There is currently a public health crisis due to the rise of multidrug-resistant tuberculosis cases, as well as the rise in the number of deaths from tuberculosis. To achieve the United Nations Sustainable Development Goal of ending the tuberculosis epidemic by 2030, new treatments are urgently required. We previously reported the discovery of , a preclinical candidate that acted through inhibition of the lysyl tRNA synthetase (LysRS).
View Article and Find Full Text PDFTuberculosis is a major global cause of both mortality and financial burden mainly in low and middle-income countries. Given the significant and ongoing rise of drug-resistant strains of Mycobacterium tuberculosis within the clinical setting, there is an urgent need for the development of new, safe and effective treatments. Here the development of a drug-like series based on a fused dihydropyrrolidino-pyrimidine scaffold is described.
View Article and Find Full Text PDFA highly diastereoselective synthesis of trifluoromethylated 1,3-dioxanes is described. The reaction proceeds by an addition/oxa-Michael sequence and works efficiently under mild reaction conditions, with a good substrate scope and acceptable to good yields.
View Article and Find Full Text PDFJ Chem Inf Comput Sci
June 2003
We investigate the following data mining problem from computer-aided drug design: From a large collection of compounds, find those that bind to a target molecule in as few iterations of biochemical testing as possible. In each iteration a comparatively small batch of compounds is screened for binding activity toward this target. We employed the so-called "active learning paradigm" from Machine Learning for selecting the successive batches.
View Article and Find Full Text PDF