Publications by authors named "Michael Grigalunas"

The indole moiety is a privileged fragment that frequently populates existing bioactive compound collections. The development of an indole-dearomatization sequence and its application for library expansion of a collection of indole-containing pseudo-natural products (NPs) are described. The resulting compounds are topologically distinct from the original compound class.

View Article and Find Full Text PDF

The pseudo-natural product (pseudo-NP) concept aims to combine NP fragments in arrangements that are not accessible through known biosynthetic pathways. The resulting compounds retain the biological relevance of NPs but are not yet linked to bioactivities and may therefore be best evaluated by unbiased screening methods resulting in the identification of unexpected or unprecedented bioactivities. Herein, various NP fragments are combined with a tricyclic core connectivity via interrupted Fischer indole and indole dearomatization reactions to provide a collection of highly three-dimensional pseudo-NPs.

View Article and Find Full Text PDF

The efficient exploration of biologically relevant chemical space is essential for the discovery of bioactive compounds. A molecular design principle that possesses both biological relevance and structural diversity may more efficiently lead to compound collections that are enriched in diverse bioactivities. Here the diverse pseudo-natural product (PNP) strategy, which combines the biological relevance of the PNP concept with synthetic diversification strategies from diversity-oriented synthesis, is reported.

View Article and Find Full Text PDF

Lipidation of the LC3 protein has frequently been employed as a marker of autophagy. However, LC3-lipidation is also triggered by stimuli not related to canonical autophagy. Therefore, characterization of the driving parameters for LC3 lipidation is crucial to understanding the biological roles of LC3.

View Article and Find Full Text PDF

Monoterpene indole alkaloids (MIAs) are endowed with high structural and spatial complexity and characterized by diverse biological activities. Given this complexity-activity combination in MIAs, rapid and efficient access to chemical matter related to and with complexity similar to these alkaloids would be highly desirable, since such compound classes might display novel bioactivity. We describe the design and synthesis of a pseudo-natural product (pseudo-NP) collection obtained by the unprecedented combination of MIA fragments through complexity-generating transformations, resulting in arrangements not currently accessible by biosynthetic pathways.

View Article and Find Full Text PDF

Design strategies that can access natural-product-like chemical space in an efficient manner may facilitate the discovery of biologically relevant compounds. We have employed a divergent intermediate strategy to construct an indole alkaloid-inspired compound collection derived from two different molecular design principles, i.e.

View Article and Find Full Text PDF

The fraction of sp-hybridized carbons () and the fraction of stereogenic carbons () are two widely employed scores of molecular complexity with strong links to biologically relevant features. However, they do not comprehensively express molecular topology, and they often do not match the chemical intuition of complexity. We propose the spacial score (SPS) as an empirical scoring system that builds upon the principle underlying and and expresses the spacial complexity of a compound in a uniform manner on a highly granular scale.

View Article and Find Full Text PDF

combination of natural product (NP) fragments by means of efficient, complexity- and stereogenic character-generating transformations to yield pseudo-natural products (PNPs) may explore novel biologically relevant chemical space. Pyrrolidine- and tetrahydroquinoline fragments rarely occur in combination in nature, such that PNPs that embody both fragments might represent novel NP-inspired chemical matter endowed with bioactivity. We describe the synthesis of pyrrolo[3,2-]quinolines by means of a highly enantioselective intramolecular -1,3-dipolar cycloaddition catalysed by the AgOAc/()-DMBiphep complex.

View Article and Find Full Text PDF

The case for a renewed focus on Nature in drug discovery is reviewed; not in terms of natural product screening, but how and why biomimetic molecules, especially those produced by natural processes, should deliver in the age of artificial intelligence and screening of vast collections both in vitro and in silico. The declining natural product-likeness of licensed drugs and the consequent physicochemical implications of this trend in the context of current practices are noted. To arrest these trends, the logic of seeking new bioactive agents with enhanced natural mimicry is considered; notably that molecules constructed by proteins (enzymes) are more likely to interact with other proteins (e.

View Article and Find Full Text PDF

Profiling approaches have been increasingly employed for the characterization of disease-relevant phenotypes or compound perturbation as they provide a broad, unbiased view on impaired cellular states. We report that morphological profiling using the cell painting assay (CPA) can detect modulators of de novo pyrimidine biosynthesis and of dihydroorotate dehydrogenase (DHODH) in particular. The CPA can differentiate between impairment of pyrimidine and folate metabolism, which both affect cellular nucleotide pools.

View Article and Find Full Text PDF

Pseudo-natural products (pseudo-NPs) are de novo combinations of natural product (NP) fragments that define novel bioactive chemotypes. For their discovery, new design principles are being sought. Previously, pseudo-NPs were synthesized by the combination of fragments originating from biosynthetically unrelated NPs to guarantee structural novelty and novel bioactivity.

View Article and Find Full Text PDF

Natural products are the result of Nature's exploration of biologically relevant chemical space through evolution and an invaluable source of bioactive small molecules for chemical biology and medicinal chemistry. Novel concepts for the discovery of new bioactive compound classes based on natural product structure may enable exploration of wider biologically relevant chemical space. The pseudo-natural product concept merges the relevance of natural product structure with efficient exploration of chemical space by means of fragment-based compound development to inspire the discovery of new bioactive chemical matter through combination of natural product fragments in unprecedented arrangements.

View Article and Find Full Text PDF

For the discovery of novel chemical matter generally endowed with bioactivity, strategies may be particularly efficient that combine previous insight about biological relevance, e.g., natural product (NP) structure, with methods that enable efficient coverage of chemical space, such as fragment-based design.

View Article and Find Full Text PDF

Chemical and biological limitations in bioactive compound design based on natural product (NP) structure can be overcome by the combination of NP-derived fragments in unprecedented arrangements to afford "pseudo-natural products" (pseudo-NPs). A new pseudo-NP design principle is described, i.e.

View Article and Find Full Text PDF

In dynamic covalent chemistry, reactions follow a thermodynamically controlled pathway through equilibria. Reversible covalent-bond formation and breaking in a dynamic process enables the interconversion of products formed under kinetic control to thermodynamically more stable isomers. Notably, enantioselective catalysis of dynamic transformations has not been reported and applied in complex molecule synthesis.

View Article and Find Full Text PDF

Niemann-Pick disease type C1 (NPC1) is a rare genetic cholesterol storage disorder caused by mutations in the gene. Mutations in this transmembrane late endosome protein lead to loss of normal cholesterol efflux from late endosomes and lysosomes. It has been shown that broad spectrum histone deacetylase inhibitors (HDACi's) such as Vorinostat correct the cholesterol accumulation phenotype in the majority of NPC1 mutants tested in cultured cells.

View Article and Find Full Text PDF

Natural product structure and fragment-based compound development inspire pseudo-natural product design through different combinations of a given natural product fragment set to compound classes expected to be chemically and biologically diverse. We describe the synthetic combination of the fragment-sized natural products quinine, quinidine, sinomenine, and griseofulvin with chromanone or indole-containing fragments to provide a 244-member pseudo-natural product collection. Cheminformatic analyses reveal that the resulting eight pseudo-natural product classes are chemically diverse and share both drug- and natural product-like properties.

View Article and Find Full Text PDF

The development of new chemical tools with improved properties is essential to chemical and cell biology. Of particular interest is the development of mimics of small molecules with important cellular function that allow the direct observation of their trafficking in a cell. To this end, a novel 15-azasterol has been designed and synthesized as a luminescent cholesterol mimic for the monitoring of cholesterol trafficking.

View Article and Find Full Text PDF

Through evolution, nature has provided natural products (NPs) as a rich source of diverse bioactive material. Many drug discovery programs have used nature as an inspiration for the design of NP-like compound classes. These concepts are guided by the prevalidated biological relevance of NPs while going beyond the limitations of nature to produce chemical matter that could have unexpected or novel bioactivities.

View Article and Find Full Text PDF

Niemann-Pick type C1 (NPC1) disease is a fatal neurovisceral disease for which there are no FDA approved treatments, though cyclodextrin (HPβCD) slows disease progression in preclinical models and in an early phase clinical trial. Our goal was to evaluate the mechanism of action of a previously described combination-therapy, Triple Combination Formulation (TCF) - comprised of the histone deacetylase inhibitor (HDACi) vorinostat/HPβCD/PEG - shown to prolong survival in Npc1 mice. In these studies, TCF's benefit was attributed to enhanced vorinostat pharmacokinetics (PK).

View Article and Find Full Text PDF

Trisubstituted α-pyrones are obtained by a Pd-catalyzed three-component, single-flask operation via an α-arylation, subsequent α-alkenylation, alkene isomerization, and dienolate lactonization. A variety of coupling components under mild conditions afforded isolated yields of up to 93% of the pyrones with complete control of regioselectivity. Metal dependence was noted for three of the steps of the pathway.

View Article and Find Full Text PDF

A three-component palladium-catalyzed reaction sequence has been developed in which γ-substituted α,β-unsaturated products are obtained in a single flask by an α-alkenylation with either a subsequent γ-alkenylation or γ-arylation of a ketone enolate. Coupling of a variety of electronically and structurally different components was achieved in the presence of a Pd/Q-Phos catalyst (2 mol %), usually at 22 °C with yields of up to 85 %. Most importantly, access to these products is obtained in one simple operation in place of employing multiple reactions.

View Article and Find Full Text PDF

A procedure for Ni-catalyzed cross-coupling of ketone enolates with alkenyl halides has been developed. Intermolecular coupling of aromatic and aliphatic ketone lithium enolates with a variety of alkenyl halides is achieved in the presence of Ni(cod)2 catalyst (5 mol %), an N-heterocyclic carbene (NHC) ligand, and LiI (10 mol %) at 6-22 °C for 0.5-12 h with yields of up to 90%.

View Article and Find Full Text PDF

A protocol for a mild, catalytic, intermolecular alkenylation of ketone enolates has been developed using a Pd/Q-Phos catalyst. Efficient intermolecular coupling of a variety of ketones with alkenyl bromides was achieved with a slight excess of LiHMDS and temperatures down to 0 °C.

View Article and Find Full Text PDF