We introduce Digital microfluidic Isolation of Single Cells for -Omics (DISCO), a platform that allows users to select particular cells of interest from a limited initial sample size and connects single-cell sequencing data to their immunofluorescence-based phenotypes. Specifically, DISCO combines digital microfluidics, laser cell lysis, and artificial intelligence-driven image processing to collect the contents of single cells from heterogeneous populations, followed by analysis of single-cell genomes and transcriptomes by next-generation sequencing, and proteomes by nanoflow liquid chromatography and tandem mass spectrometry. The results described herein confirm the utility of DISCO for sequencing at levels that are equivalent to or enhanced relative to the state of the art, capable of identifying features at the level of single nucleotide variations.
View Article and Find Full Text PDFSci Transl Med
April 2018
Serosurveys are useful for assessing population susceptibility to vaccine-preventable disease outbreaks. Although at-risk populations in remote areas could benefit from this type of information, they face several logistical barriers to implementation, such as lack of access to centralized laboratories, cold storage, and transport of samples. We describe a potential solution: a compact and portable, field-deployable, point-of-care system relying on digital microfluidics that can rapidly test a small volume of capillary blood for disease-specific antibodies.
View Article and Find Full Text PDFIsaac Newton famously observed that "if I have seen further it is by standing on the shoulders of giants." We propose that this sentiment is a powerful motivation for the "open-source" movement in scientific research, in which creators provide everything needed to replicate a given project online, as well as providing explicit permission for users to use, improve, and share it with others. Here, we write to introduce analytical chemists who are new to the open-source movement to best practices and concepts in this area and to survey the state of open-source research in analytical chemistry.
View Article and Find Full Text PDFNuclear magnetic resonance (NMR) spectroscopy is extremely powerful for chemical analysis but it suffers from lower mass sensitivity compared to many other analytical detection methods. NMR microcoils have been developed in response to this limitation, but interfacing these coils with small sample volumes is a challenge. We introduce here the first digital microfluidic system capable of interfacing droplets of analyte with microcoils in a high-field NMR spectrometer.
View Article and Find Full Text PDFDopamine (DA) is a classical neurotransmitter and dysfunction in its synaptic handling underlies many neurological disorders, including addiction, depression, and neurodegeneration. A key to understanding DA dysfunction is the accurate measurement of dopamine uptake by dopaminergic neurons. Current methods that allow for the analysis of dopamine uptake rely on standard multiwell-plate based ELISA, or on carbon-fibre microelectrodes used in in vivo recording techniques.
View Article and Find Full Text PDFMost electroanalytical techniques require the precise control of the potentials in an electrochemical cell using a potentiostat. Commercial potentiostats function as "black boxes," giving limited information about their circuitry and behaviour which can make development of new measurement techniques and integration with other instruments challenging. Recently, a number of lab-built potentiostats have emerged with various design goals including low manufacturing cost and field-portability, but notably lacking is an accessible potentiostat designed for general lab use, focusing on measurement quality combined with ease of use and versatility.
View Article and Find Full Text PDFNanostructured microelectrodes (NMEs) are three-dimensional electrodes that have superb sensitivity for electroanalysis. Here we report the integration of NMEs with the versatile fluid-handling system digital microfluidics (DMF), for eventual application to distributed diagnostics outside of the laboratory. In the new methods reported here, indium tin oxide DMF top plates were modified to include Au NMEs as well as counter and pseudoreference electrodes.
View Article and Find Full Text PDFDigital microfluidics (DMF) is an emerging technique for manipulating small volumes of liquids. DMF is particularly well suited for analytical applications as it allows automated handling of discrete samples, and it has been integrated with several inline analysis techniques. However, examples of the integration of DMF with electroanalytical methods are notably scarce, and those that have been reported rely on external electrodes that impose limitations on complexity.
View Article and Find Full Text PDFThe metalated forms of metallothionein are well studied (particularly Zn-MT, Cu-MT and Cd-MT), but almost nothing is known about the chemical and structural properties of apometallothioneins despite their importance in initial metalation and subsequent demetalation. Electrospray ionization mass spectrometry was used to provide a detailed view of the structural properties of the metal-free protein. Mass spectra of Zn(7)-MT and apo-MT at pH 7 exhibit the same charge state distribution, indicating that apo-MT is tightly folded like the metallated protein, whereas apo-MT at pH 3 exhibits a charge state spectrum associated with unfolding or denaturation.
View Article and Find Full Text PDFBiochem Biophys Res Commun
October 2010
As³+ bound to the two-domain, recombinant human metallothionein (isoform 1a) is stable at pH 7 and translocates via protein-protein interactions to other metallothionein proteins. The data show As³+ transfer from the two-domain β-α-hMT to binding sites in the isolated apo-β-hMT and apo-α-hMT. Under conditions of equilibrium, apo- and partially-metallated species coexist indicating that noncooperative demetallation of the As(6)-βα-hMT occurrs.
View Article and Find Full Text PDF