Esophageal epidermoid metaplasia (EEM) is a rare condition characterized by well-demarcated leukoplakia affecting the middle-to-distal esophagus. EEM commonly presents in middle-aged females with dysphagia and gastroesophageal reflux. EEM is thought to be associated with high-grade squamous dysplasia and squamous cell carcinoma.
View Article and Find Full Text PDFIn this study, we leveraged the combined evidence of rare coding variants and common alleles to identify therapeutic targets for osteoporosis. We undertook a large-scale multiancestry exome-wide association study for estimated bone mineral density, which showed that the burden of rare coding alleles in 19 genes was associated with estimated bone mineral density (P < 3.6 × 10).
View Article and Find Full Text PDFHuman genetic studies of smoking behavior have been thus far largely limited to common variants. Studying rare coding variants has the potential to identify drug targets. We performed an exome-wide association study of smoking phenotypes in up to 749,459 individuals and discovered a protective association in CHRNB2, encoding the β2 subunit of the α4β2 nicotine acetylcholine receptor.
View Article and Find Full Text PDFCoding variants that have significant impact on function can provide insights into the biology of a gene but are typically rare in the population. Identifying and ascertaining the frequency of such rare variants requires very large sample sizes. Here, we present the largest catalog of human protein-coding variation to date, derived from exome sequencing of 985,830 individuals of diverse ancestry to serve as a rich resource for studying rare coding variants.
View Article and Find Full Text PDFClonal haematopoiesis involves the expansion of certain blood cell lineages and has been associated with ageing and adverse health outcomes. Here we use exome sequence data on 628,388 individuals to identify 40,208 carriers of clonal haematopoiesis of indeterminate potential (CHIP). Using genome-wide and exome-wide association analyses, we identify 24 loci (21 of which are novel) where germline genetic variation influences predisposition to CHIP, including missense variants in the lymphocytic antigen coding gene LY75, which are associated with reduced incidence of CHIP.
View Article and Find Full Text PDFGlaucoma is a leading cause of blindness. Current glaucoma medications work by lowering intraocular pressure (IOP), a risk factor for glaucoma, but most treatments do not directly target the pathological changes leading to increased IOP, which can manifest as medication resistance as disease progresses. To identify physiological modulators of IOP, we performed genome- and exome-wide association analysis in >129,000 individuals with IOP measurements and extended these findings to an analysis of glaucoma risk.
View Article and Find Full Text PDFBody fat distribution is a major, heritable risk factor for cardiometabolic disease, independent of overall adiposity. Using exome-sequencing in 618,375 individuals (including 160,058 non-Europeans) from the UK, Sweden and Mexico, we identify 16 genes associated with fat distribution at exome-wide significance. We show 6-fold larger effect for fat-distribution associated rare coding variants compared with fine-mapped common alleles, enrichment for genes expressed in adipose tissue and causal genes for partial lipodystrophies, and evidence of sex-dimorphism.
View Article and Find Full Text PDFBackground: Exome sequencing in hundreds of thousands of persons may enable the identification of rare protein-coding genetic variants associated with protection from human diseases like liver cirrhosis, providing a strategy for the discovery of new therapeutic targets.
Methods: We performed a multistage exome sequencing and genetic association analysis to identify genes in which rare protein-coding variants were associated with liver phenotypes. We conducted in vitro experiments to further characterize associations.
A major goal in human genetics is to use natural variation to understand the phenotypic consequences of altering each protein-coding gene in the genome. Here we used exome sequencing to explore protein-altering variants and their consequences in 454,787 participants in the UK Biobank study. We identified 12 million coding variants, including around 1 million loss-of-function and around 1.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), a respiratory illness that can result in hospitalization or death. We used exome sequence data to investigate associations between rare genetic variants and seven COVID-19 outcomes in 586,157 individuals, including 20,952 with COVID-19. After accounting for multiple testing, we did not identify any clear associations with rare variants either exome wide or when specifically focusing on (1) 13 interferon pathway genes in which rare deleterious variants have been reported in individuals with severe COVID-19, (2) 281 genes located in susceptibility loci identified by the COVID-19 Host Genetics Initiative, or (3) 32 additional genes of immunologic relevance and/or therapeutic potential.
View Article and Find Full Text PDFThe UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%).
View Article and Find Full Text PDFBackground: We compared outcomes in inpatients and outpatients, pre-COVID-19, who were infected with either coronavirus or influenza.
Methods: Using deidentified electronic health records data from the Geisinger-Regeneron partnership, we compared patients with RT-PCR-positive tests for the 4 common coronaviruses (229E, HKU1, NL63, OC43) or influenza (A and B) from June 2016 to February 2019.
Results: Overall, 52 833 patients were tested for coronaviruses and influenza.