Publications by authors named "Michael Bonthron"

Cellular metamaterials represent unique platforms to manipulate structure-property relationships and enhance mechanical responses. While their unconventional behaviors have traditionally been obtained via pattern-transformations under compressive loading or deflation, we theoretically investigate and experimentally realize a new class of soft, porous metamaterials that undergo buckling instability upon inflation, unlocking superior programming and sequencing capabilities for soft intelligent machines. Our inflatable metamaterial reimagines the traditional rubber slab with periodic holes by incorporating a single internal pressure cavity.

View Article and Find Full Text PDF