We report nonadiabatic dynamics computations on CH initiated on a coherent superposition of the five lowest cationic states, employing the Quantum Ehrenfest method. In addition to the totally symmetric carbon-carbon double bond stretch and carbon-hydrogen stretches, we see that the three non-totally symmetric modes become stimulated; torsion and three different CH stretching patterns. Thus, a coherent superposition of states, of the type involved in an attochemistry experiment, leads to the stimulation of specific non-totally symmetric motions.
View Article and Find Full Text PDFWe present a strategy for the modeling of charge carrier dynamics in organic semiconductors using conventional quantum chemistry methods, including the analytic gradient for nuclear motion. The theoretical approach uses real-time CASSCF (Ehrenfest) all-electron dynamics coupled to classical nuclear dynamics for the special case of a small number (4-8) of molecular units. The objective is to obtain mechanistic/atomistic insight at the electronic structure level, relating to spin density dynamics, to the effect of crystal structure (e.
View Article and Find Full Text PDFWe report a protocol for the implementation of "reaction path following" from a transition state through a conical intersection, including both the path curvature induced by the derivative coupling and the corresponding induced electronic coherences. This protocol focuses on the "central" Gaussian wavepacket (initially unexcited) in the quantum Ehrenfest (QuEh) method. Like the reaction path following, the normal mode corresponding to the imaginary frequency at the transition state is given an initial momentum.
View Article and Find Full Text PDFWe present a theoretical study of intersystem crossing (ISC) in acrolein and ketene with the Ehrenfest method that can describe a superposition of singlet and triplet states. Our simulations illustrate a new mechanistic effect of ISC, namely, that a superposition of singlets and triplets yields nonadiabatic dynamics characteristic of that superposition rather than the constituent state potential energy surfaces. This effect is particularly significant in ketene, where mixing of singlet and triplet states along the approach to a singlet/singlet conical intersection occurs, with the spin-orbit coupling (SOC) remaining small throughout.
View Article and Find Full Text PDFIn this work, we have studied the nuclear and electron dynamics in the glycine cation starting from localized hole states using the quantum Ehrenfest method. The nuclear dynamics is controlled both by the initial gradient and by the instantaneous gradient that results from the oscillatory electron dynamics (charge migration). We have used the Fourier transform (FT) of the spin densities to identify the "normal modes" of the electron dynamics.
View Article and Find Full Text PDFJ Phys Chem Lett
June 2021
The primary event occurring during the E-to-Z photoisomerization reaction of retinal protonated Schiff base (rPSB) is single-to-double bond inversion. In this work we examine the nuclear dynamics that occurs when the initial excited state is a superposition of the S and S electronic excited states that might be created in a laser experiment. The nuclear dynamics is dominated by double bond inversion that is parallel to the derivative coupling vector of S and S.
View Article and Find Full Text PDFThe study of coupled electron-nuclear dynamics driven by coherent superpositions of electronic states is now possible in attosecond science experiments. The objective is to understand the electronic control of chemical reactivity. In this work we report coherent 8-state non-adiabatic electron-nuclear dynamics simulations of the benzene radical cation.
View Article and Find Full Text PDFWe describe the implementation of a laser control pulse in the quantum-Ehrenfest method, a molecular quantum dynamics method that solves the time-dependent Schrödinger equation for both electrons and nuclei. The oscillating electric field-dipole interaction is incorporated directly in the one-electron Hamiltonian of the electronic structure part of the algorithm. We then use the coupled electron-nuclear dynamics of the π-system in the allene radical cation (•CH=C=CH) as a simple model of a pump-control experiment.
View Article and Find Full Text PDFRASSCF calculations of vertical excitation energies were carried out on a benchmark set of 19 organic molecules studied by Thiel and co-workers [ J. Chem. Phys.
View Article and Find Full Text PDFQuantum dynamics simulations are an important tool to evaluate molecular behaviour including the, often key, quantum nature of the system. In this paper we present an algorithm that is able to simulate the time evolution of a molecule after photo-excitation into a manifold of states. The direct dynamics variational multi-configurational Gaussian (DD-vMCG) method circumvents the computational bottleneck problems of traditional grid-based methods by computing the potential energy functions on-the-fly, i.
View Article and Find Full Text PDFAn algorithm is described for quantum dynamics where an Ehrenfest potential is combined with fully quantum nuclear motion (Quantum-Ehrenfest, Qu-Eh). The method is related to the single-set variational multi-configuration Gaussian approach (vMCG) but has the advantage that only a single quantum chemistry computation is required at each time step since there is only a single time-dependent potential surface. Also shown is the close relationship to the "exact factorization method.
View Article and Find Full Text PDFJ Phys Chem A
March 2018
Macroscopic magnetic properties are analyzed using Valence Bond theory. Commonly the critical temperature T for magnetic systems is associated with a maximum in the energy-based heat capacity C(T). Here a more broadly applicable definition of the magnetic transition temperature T is described using the spin moment expectation value (i.
View Article and Find Full Text PDFKnowledge about the electronic motion in molecules is essential for our understanding of chemical reactions and biological processes. The advent of attosecond techniques opens up the possibility to induce electronic motion, observe it in real time, and potentially steer it. A fundamental question remains the factors influencing electronic decoherence and the role played by nuclear motion in this process.
View Article and Find Full Text PDFFaraday Discuss
December 2016
The observation of electronic motion remains a key target in the development of the field of attoscience. However, systems in which long-lived oscillatory charge migration may be observed must be selected carefully, particularly because it has been shown that nuclear spatial delocalization leads to a loss of coherent electron density oscillations. Here we demonstrate electron dynamics in norbornadiene and extended systems where the hole density migrates between two identical chromophores.
View Article and Find Full Text PDFFaraday Discuss
December 2016
We have simulated the coupled electron and nuclear dynamics using the Ehrenfest method upon valence ionisation of modified bismethylene-adamantane (BMA) molecules where there is an electron transfer between the two π bonds. We have shown that the nuclear motion significantly affects the electron dynamics after a few fs when the electronic states involved are close in energy. We have also demonstrated how the non-stationary electronic wave packet determines the nuclear motion, more precisely the asymmetric stretching of the two π bonds, illustrating "charge-directed reactivity".
View Article and Find Full Text PDFWe simulate electron dynamics following ionization in 2-phenyl-ethyl-amine and 2-phenylethyl-N,N-dimethylamine as examples of systems where 3 coupled cationic states are involved. We study two nuclear effects on electron dynamics: (i) coupled electron-nuclear motion and (ii) nuclear spatial delocalization as a result of the zero-point energy in the neutral molecule. Within the Ehrenfest approximation, our calculations show that the coherent electron dynamics in these molecules is not lost as a result of coupled electron-nuclear motion.
View Article and Find Full Text PDFNonadiabatic dynamics in the vicinity of conical intersections is of essential importance in photochemistry. It is well known that if the branching space is represented in polar coordinates, then for a geometry represented by angle θ, the corresponding adiabatic states are obtained from the diabatic states with the mixing angle θ/2. In an equivalent way, one can study the relation between the real rotation of diabatic states and the resulting nuclear gradient.
View Article and Find Full Text PDFWe present the formulation and implementation of a polarizable quantum mechanics/molecular mechanics (QM/MM) strategy to describe environment effects in multiconfiguration self-consistent field calculations. The strategy is applied to the calculation of the vertical absorption spectrum of cytosine in water. In our approach, mutual polarization of the solute and the solvent is solved self-consistently at the complete-active-space self-consistent-field (CASSCF) level, and the resulting set of charges and dipoles is used to calculate vertical excitation energies using the complete-active-space second-order perturbative (CASPT2) approach and its multistate (MS-CASPT2) variant.
View Article and Find Full Text PDFPhotoionization can generate a non-stationary electronic state, which leads to coupled electron-nuclear dynamics in molecules. In this article, we choose benzene cation as a prototype because vertical ionization of the neutral species leads to a Jahn-Teller degeneracy between ground and first excited states of the cation. Starting with equal populations of ground and first excited states, there is no electron dynamics in this case.
View Article and Find Full Text PDFPhotoionization can create a nonstationary electronic state and therefore initiates coupled electron-nuclear dynamics in molecules. Using a CASSCF implementation of the Ehrenfest method, we study the nuclear dynamics following vertical ionization of toluene, starting close to the conical intersection between ground and first excited states of its cation. The results show how the initial nuclear dynamics is controlled by the nonstationary electronic state character.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2014
The photochromic properties of diarylethenes, some of the most studied class of molecular switches, are known to be controlled by non-adiabatic decay at a conical intersection seam. Nevertheless, as their fatigue-reaction mechanism - leading to non-photochromic products - is yet to be understood, we investigate the photo-chemical formation of the so-called by-product isomer using three complementary computational methods (MMVB, CASSCF and CASPT2) on three model systems of increasing complexity. We show that for the ring-opening reaction a transition state on S1(2A) involving bond breaking of the penta-ring leads to a low energy S1(2A)/S0(1A) conical intersection seam, which lies above one of the transition states leading to the by-product isomer on the ground state.
View Article and Find Full Text PDFCoupled electron-nuclear dynamics has been studied, using the Ehrenfest method, for four conformations of the glycine molecule and a single conformation of Gly-Gly-NH-CH3. The initial electronic wavepacket was a superposition of eigenstates corresponding to ionization from the σ lone pairs associated with the carbonyl oxygens and the amine nitrogen. For glycine, oscillating charge migration (when the nuclei were frozen) was observed for the 4 conformers studied with periods ranging from 2 to 5 fs, depending on the energy gap between the lone pair cationic states.
View Article and Find Full Text PDFCoupled electron-nuclear dynamics, implemented using the Ehrenfest method, has been used to study charge migration with fixed nuclei, together with charge transfer when nuclei are allowed to move. Simulations were initiated at reference geometries of neutral benzene and 2-phenylethylamine (PEA), and at geometries close to potential energy surface crossings in the cations. Cationic eigenstates, and the so-called sudden approximation, involving removal of an electron from a correlated ground-state wavefunction for the neutral species, were used as initial conditions.
View Article and Find Full Text PDF