Publications by authors named "Michael A Erb"

Chemical inducers of proximity (CIPs) can elicit durable-and often neomorphic-biological effects through the formation of a ternary complex, even at low equilibrium occupancy of their targets. This "event-driven" pharmacology is exemplified by CIPs that promote targeted protein degradation, but other applications remain underexplored. We developed a generalizable strategy to discover event-driven CIPs by tracking the cellular effects of heterobifunctional small molecules alongside quantitative measures of intracellular target engagement.

View Article and Find Full Text PDF

Activation of the YAP-TEAD transcriptional complex drives the growth of several cancer types and is a key resistance mechanism to targeted therapies. Accordingly, a host of pharmacological inhibitors to TEAD family paralogs have been developed, yet little is known as to the resistance mechanisms that might arise against this emerging therapeutic class. Here, we report that genetic augmentation of coenzyme A biosynthesis desensitizes YAP-dependent cancer cells to treatment with TEAD inhibitors, an effect driven by increased levels of palmitoyl-CoA that outcompete drug for engagement of the lipid-binding pocket.

View Article and Find Full Text PDF

Pioneer transcription factors (TFs) bind to and open closed chromatin, facilitating engagement by other regulatory factors involved in gene activation or repression. Chemical probes are lacking for pioneer TFs, which has hindered their mechanistic investigation in cells. Here, we report the chemical proteomic discovery of electrophilic compounds that stereoselectively and site-specifically bind the pioneer TF forkhead box protein A1 (FOXA1) at a cysteine (C258) within the forkhead DNA-binding domain.

View Article and Find Full Text PDF

Post-translational modifications (PTMs) dynamically regulate the critical stress response and tumor suppressive functions of p53. Among these, acetylation events mediated by multiple acetyltransferases lead to differential target gene activation and subsequent cell fate. However, our understanding of these events is incomplete due to, in part, the inability to selectively and dynamically control p53 acetylation.

View Article and Find Full Text PDF
Article Synopsis
  • Molecular glues are small molecules that stabilize protein interactions and are gaining traction for drug development, particularly for targeted protein degradation, despite lacking the design principles seen in other methods like PROTACs.
  • Researchers modified the CRBN ligand, 5'-amino lenalidomide, to change its target specificity using a method called sulfur(VI)-fluoride exchange (SuFEx), successfully creating over 3,000 analogs.
  • Among the screened compounds, four were identified that effectively degrade the G-to-S phase transition 1 (GSPT1) protein, showcasing the potential for discovering new CRBN molecular glues through SuFEx techniques.
View Article and Find Full Text PDF

Pioneer transcription factors (TFs) exhibit a specialized ability to bind to and open closed chromatin, facilitating engagement by other regulatory factors involved in gene activation or repression. Chemical probes are lacking for pioneer TFs, which has hindered their mechanistic investigation in cells. Here, we report the chemical proteomic discovery of electrophilic small molecules that stereoselectively and site-specifically bind the pioneer TF, FOXA1, at a cysteine (C258) within the forkhead DNA-binding domain.

View Article and Find Full Text PDF

Despite advances in defining diverse somatic mutations that cause myeloid malignancies, a significant heritable component for these cancers remains largely unexplained. Here, we perform rare variant association studies in a large population cohort to identify inherited predisposition genes for these blood cancers. CTR9, which encodes a key component of the PAF1 transcription elongation complex, is among the significant genes identified.

View Article and Find Full Text PDF
Article Synopsis
  • Chromatin reader domains are protein folds that interact with modifications on histones and proteins related to chromatin; YEATS domains are a newer discovery that specifically binds to acylated lysines.
  • Four human proteins containing YEATS domains (ENL, AF9, YEATS2, and YEATS4) are involved in regulating chromatin and transcription.
  • Recent advancements in small-molecule tools for YEATS domains are enhancing our understanding of their biological functions and contributions.
View Article and Find Full Text PDF

Transcriptional co-regulators have been widely pursued as targets for disrupting oncogenic gene regulatory programs. However, many proteins in this target class are universally essential for cell survival, which limits their therapeutic window. Here we unveil a genetic interaction between histone deacetylase 1 (HDAC1) and HDAC2, wherein each paralog is synthetically lethal with hemizygous deletion of the other.

View Article and Find Full Text PDF

Histone acetyltransferases (HATs) are implicated as both oncogene and nononcogene dependencies in diverse human cancers. Acetyl-CoA-competitive HAT inhibitors have emerged as potential cancer therapeutics and the first clinical trial for this class of drugs is ongoing (NCT04606446). Despite these developments, the potential mechanisms of therapeutic response and evolved drug resistance remain poorly understood.

View Article and Find Full Text PDF

Transcriptional coregulators, which mediate chromatin-dependent transcriptional signaling, represent tractable targets to modulate tumorigenic gene expression programs with small molecules. Genetic loss-of-function studies have recently implicated the transcriptional coactivator, ENL, as a selective requirement for the survival of acute leukemia and highlighted an essential role for its chromatin reader YEATS domain. Motivated by these discoveries, we executed a screen of nearly 300,000 small molecules and identified an amido-imidazopyridine inhibitor of the ENL YEATS domain (IC = 7 μM).

View Article and Find Full Text PDF

Recent technological advances have expanded the annotated protein coding content of mammalian genomes, as hundreds of previously unidentified, short open reading frame (ORF)-encoded peptides (SEPs) have now been found to be translated. Although several studies have identified important physiological roles for this emerging protein class, a general method to define their interactomes is lacking. Here, we demonstrate that genetic incorporation of the photo-crosslinking noncanonical amino acid AbK into SEP transgenes allows for the facile identification of SEP cellular interaction partners using affinity-based methods.

View Article and Find Full Text PDF
Article Synopsis
  • * The study introduces a novel target engagement assay, based on the cellular thermal shift assay (CETSA), that functions at normal temperatures to identify compounds that stabilize the ENL YEATS domain in living cells.
  • * This assay was miniaturized to a 1536-well format, enabling a large-scale screening of over 37,000 small molecules, resulting in the identification of a potential inhibitor for the ENL/AF9 YEATS domain.
View Article and Find Full Text PDF

Upon binding of transcription factors to cis-regulatory DNA sequences, transcriptional coregulators are required for the activation or suppression of chromatin-dependent transcriptional signaling. These coregulators are frequently implicated in oncogenesis via causal roles in dysregulated, malignant transcriptional control and represent one of the fastest-growing target classes in small-molecule drug discovery. However, challenges in targeting coregulators include identifying evidence of cancer-specific genetic dependency, matching the pharmacologically addressable protein fold to a functional role in disease pathology, and achieving the necessary selectivity to exploit a given genetic dependency.

View Article and Find Full Text PDF

Dissection of complex biological systems requires target-specific control of the function or abundance of proteins. Genetic perturbations are limited by off-target effects, multicomponent complexity, and irreversibility. Most limiting is the requisite delay between modulation to experimental measurement.

View Article and Find Full Text PDF

The addressable pocket of a protein is often not functionally relevant in disease. This is true for the multidomain, bromodomain-containing transcriptional regulator TRIM24. TRIM24 has been posited as a dependency in numerous cancers, yet potent and selective ligands for the TRIM24 bromodomain do not exert effective anti-proliferative responses.

View Article and Find Full Text PDF

Amplification of the locus encoding the oncogenic transcription factor MYCN is a defining feature of high-risk neuroblastoma. Here we present the first dynamic chromatin and transcriptional landscape of MYCN perturbation in neuroblastoma. At oncogenic levels, MYCN associates with E-box binding motifs in an affinity-dependent manner, binding to strong canonical E-boxes at promoters and invading abundant weaker non-canonical E-boxes clustered at enhancers.

View Article and Find Full Text PDF

Protein degradation is an emerging therapeutic strategy with a unique molecular pharmacology that enables the disruption of all functions associated with a target. This is particularly relevant for proteins depending on molecular scaffolding, such as transcription factors or receptor tyrosine kinases (RTKs). To address tractability of multiple RTKs for chemical degradation by the E3 ligase CUL4-RBX1-DDB1-CRBN (CRL4), we synthesized a series of phthalimide degraders based on the promiscuous kinase inhibitors sunitinib and PHA665752.

View Article and Find Full Text PDF

Cyclin-dependent kinase 9 (CDK9), an important regulator of transcriptional elongation, is a promising target for cancer therapy, particularly for cancers driven by transcriptional dysregulation. We characterized NVP-2, a selective ATP-competitive CDK9 inhibitor, and THAL-SNS-032, a selective CDK9 degrader consisting of a CDK-binding SNS-032 ligand linked to a thalidomide derivative that binds the E3 ubiquitin ligase Cereblon (CRBN). To our surprise, THAL-SNS-032 induced rapid degradation of CDK9 without affecting the levels of other SNS-032 targets.

View Article and Find Full Text PDF

Processive elongation of RNA Polymerase II from a proximal promoter paused state is a rate-limiting event in human gene control. A small number of regulatory factors influence transcription elongation on a global scale. Prior research using small-molecule BET bromodomain inhibitors, such as JQ1, linked BRD4 to context-specific elongation at a limited number of genes associated with massive enhancer regions.

View Article and Find Full Text PDF

Cancer cells are characterized by aberrant epigenetic landscapes and often exploit chromatin machinery to activate oncogenic gene expression programs. Recognition of modified histones by 'reader' proteins constitutes a key mechanism underlying these processes; therefore, targeting such pathways holds clinical promise, as exemplified by the development of bromodomain and extra-terminal (BET) inhibitors. We recently identified the YEATS domain as an acetyl-lysine-binding module, but its functional importance in human cancer remains unknown.

View Article and Find Full Text PDF

Recurrent chromosomal translocations producing a chimaeric MLL oncogene give rise to a highly aggressive acute leukaemia associated with poor clinical outcome. The preferential involvement of chromatin-associated factors as MLL fusion partners belies a dependency on transcription control. Despite recent progress made in targeting chromatin regulators in cancer, available therapies for this well-characterized disease remain inadequate, prompting the need to identify new targets for therapeutic intervention.

View Article and Find Full Text PDF

We previously developed an antibody-avidin fusion protein (ch128.1Av) that targets the human transferrin receptor 1 (TfR1) and exhibits direct cytotoxicity against malignant B cells in an iron-dependent manner. ch128.

View Article and Find Full Text PDF

Objective: Fibrin glue products and collagen surgical patches (TachoSil) coated with coagulation factors I and IIa are increasingly being used to prevent oozing from distal or proximal coronary anastomosis. Furthermore, an increasing number of patients are being operated upon anti-platelet therapy. These patients often exhibit diffuse bleeding.

View Article and Find Full Text PDF