The dual-specificity tyrosine-phoshorylation-regulated kinase (DYRK) family are multifunctional enzymes crucial for diverse cellular processes, including signaling through the primary cilium. Their dysregulation has been implicated in various cancers and developmental disorders, highlighting the need to define their interactors and cellular functions to inform targeted therapeutics. In this study, we generate the proximity interactome of DYRK3, identifying 178 proteins involved in a range of cellular processes, including primary cilium biogenesis.
View Article and Find Full Text PDFCentrioles are microtubule-based organelles responsible for forming centrosomes and cilia, which serve as microtubule-organizing, signaling, and motility centers. Biogenesis and maintenance of centrioles with proper number, size, and architecture are vital for their functions during development and physiology. While centriole number control has been well-studied, less is understood about their maintenance as stable structures with conserved size and architecture during cell division and ciliary motility.
View Article and Find Full Text PDFAurora kinase A (AURKA) is a conserved kinase that plays crucial roles in numerous cellular processes. Although AURKA overexpression is frequent in human cancers, its pleiotropic functions and multifaceted regulation present challenges in its therapeutic targeting. Key to overcoming these challenges is to identify and characterize the full range of AURKA interactors, which are often weak and transient.
View Article and Find Full Text PDFThe mammalian centrosome/cilium complex is composed of the centrosome, the primary cilium and the centriolar satellites, which together regulate cell polarity, signaling, proliferation and motility in cells and thereby development and homeostasis in organisms. Accordingly, deregulation of its structure and functions is implicated in various human diseases including cancer, developmental disorders and neurodegenerative diseases. To better understand these disease connections, the molecular underpinnings of the assembly, maintenance and dynamic adaptations of the centrosome/cilium complex need to be uncovered with exquisite detail.
View Article and Find Full Text PDFCentrosomes function in key cellular processes ranging from cell division to cellular signaling. Their dysfunction is linked to cancer and developmental disorders. Here, we identify CCDC57 as a pleiotropic regulator of centriole duplication, mitosis, and ciliogenesis.
View Article and Find Full Text PDFCoordination between membrane trafficking and actin polymerization is fundamental in cell migration, but a dynamic view of the underlying molecular mechanisms is still missing. The Rac1 GTPase controls actin polymerization at protrusions by interacting with its effector, the Wave regulatory complex (WRC). The exocyst complex, which functions in polarized exocytosis, has been involved in the regulation of cell motility.
View Article and Find Full Text PDFChronic myeloid leukemia and systemic mastocytosis are myeloid neoplasms sharing a number of pathogenetic and clinical features. In both conditions, an aberrantly activated oncoprotein with tyrosine kinase activity, namely BCR-ABL1 in chronic myeloid leukemia, and mutant KIT, mostly KIT D816V, in systemic mastocytosis, is key to disease evolution. The appreciation of the role of such tyrosine kinases in these diseases has led to the development of improved therapies with tyrosine kinase-targeted inhibitors.
View Article and Find Full Text PDF