Mechanisms underlying distinct specification, commitment, and differentiation phases of cell fate determination remain undefined due to difficulties capturing these processes. Here, we interrogate the activity of ETV2, a transcription factor necessary and sufficient for hematoendothelial differentiation, within isolated fate intermediates. We observe transcriptional upregulation of Etv2 and opening of ETV2-binding sites, indicating new ETV2 binding, in a common cardiac-hematoendothelial progenitor population.
View Article and Find Full Text PDFMany developmental signaling pathways have been implicated in lineage-specific differentiation; however, mechanisms that explicitly control differentiation timing remain poorly defined in mammals. We report that murine Hedgehog signaling is a heterochronic pathway that determines the timing of progenitor differentiation. Hedgehog activity was necessary to prevent premature differentiation of second heart field (SHF) cardiac progenitors in mouse embryos, and the Hedgehog transcription factor GLI1 was sufficient to delay differentiation of cardiac progenitors in vitro.
View Article and Find Full Text PDFSemin Cell Dev Biol
October 2021
Congenital Heart Disease (CHD), malformations of the heart present at birth, is the most common class of life-threatening birth defect (Hoffman (1995) [1], Gelb (2004) [2], Gelb (2014) [3]). A major research challenge is to elucidate the genetic determinants of CHD and mechanistically link CHD ontogeny to a molecular understanding of heart development. Although the embryonic origins of CHD are unclear in most cases, dysregulation of cardiovascular lineage specification, patterning, proliferation, migration or differentiation have been described (Olson (2004) [4], Olson (2006) [5], Srivastava (2006) [6], Dunwoodie (2007) [7], Bruneau (2008) [8]).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
July 2020
The mechanisms used by embryos to pattern tissues across their axes has fascinated developmental biologists since the founding of embryology. Here, using single-cell technology, we interrogate complex patterning defects and define a Hedgehog (Hh)-fibroblast growth factor (FGF) signaling axis required for anterior mesoderm lineage development during gastrulation. Single-cell transcriptome analysis of Hh-deficient mesoderm revealed selective deficits in anterior mesoderm populations, culminating in defects to anterior embryonic structures, including the pharyngeal arches, heart, and anterior somites.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2018
Codevelopment of the lungs and heart underlies key evolutionary innovations in the transition to terrestrial life. Cardiac specializations that support pulmonary circulation, including the atrial septum, are generated by second heart field (SHF) cardiopulmonary progenitors (CPPs). It has been presumed that transcription factors required in the SHF for cardiac septation, e.
View Article and Find Full Text PDFA mutant transcription factor that has been linked to congenital heart disease has wider effects than previously thought.
View Article and Find Full Text PDFBackground: Dynamic alterations in cell shape, migration, and adhesion play a central role in tissue morphogenesis during embryonic development and congenital disease. The mesenchymal-to-epithelial transition that occurs during vertebrate somitogenesis is required for proper patterning of the axial musculoskeletal system. Somitic MET is initiated in the presomitic mesoderm by PARAXIS-dependent changes in cell adhesion, cell polarity, and the composition of the extracellular matrix.
View Article and Find Full Text PDFThe homeobox transcription factor Mohawk (Mkx) is a potent transcriptional repressor expressed in the embryonic precursors of skeletal muscle, cartilage, and bone. MKX has recently been shown to be a critical regulator of musculoskeletal tissue differentiation and gene expression; however, the genetic pathways through which MKX functions and its DNA-binding properties are currently unknown. Using a modified bacterial one-hybrid site selection assay, we determined the core DNA-recognition motif of the mouse monomeric Mkx homeodomain to be A-C-A.
View Article and Find Full Text PDFReproduction
January 2009
Lunatic fringe belongs to a family of beta1-3 N-acetyltransferases that modulate the affinity of the Notch receptors for their ligands through the elongation of O-fucose moieties on their extracellular domain. A role for Notch signaling in vertebrate fertility has been predicted by the intricate expression of the Notch receptors and their ligands in the oocyte and granulosa cells of the ovary and the spermatozoa and Sertoli cells of the testis. It has been demonstrated that disruption of Notch signaling by inactivation of lunatic fringe led to infertility associated with pleiotropic defects in follicle development and meiotic maturation of oocytes.
View Article and Find Full Text PDF