Publications by authors named "Megan DeMouth"

BMS-818251, a fostemsavir analog, is a next-generation HIV-1 attachment inhibitor with enhanced potency and a similar resistance profile. By using viral outgrowth assays with HIV+ donor samples, we demonstrate here that BMS-818251 exhibits superior viral suppression compared to temsavir, the active form of fostemsavir. To map potential resistance pathways, we employed deep mutational scanning and pseudotyped virus neutralization assays to identify escape mutations within the HIV-1 envelope glycoprotein (Env).

View Article and Find Full Text PDF

Antibodies mediate protection against a wide range of pathogens through binding and neutralizing the pathogen or through Fc-mediated effector functions. Human monoclonal antibodies (mAbs) CIS43LS and L9LS show high-affinity binding targeting distinct regions on the circumsporozoite protein (PfCSP) and are highly effective in preventing malaria in humans. However, the role of FcγR binding in protection by these mAbs has not been determined.

View Article and Find Full Text PDF
Article Synopsis
  • Monkeypox virus (MPXV) is causing a global outbreak, raising questions about different antibody responses from vaccination versus actual infection.
  • A study found that convalescent individuals (those who recovered from MPXV) had higher neutralizing antibodies against the virus compared to vaccinated and non-infected people one month after exposure.
  • Both groups experienced a significant decrease in antibody levels after eight months, indicating a need for improved vaccine strategies to ensure longer-lasting immunity and reduce breakthrough infections.
View Article and Find Full Text PDF

Durable serological memory following vaccination is critically dependent on the production and survival of long-lived plasma cells (LLPCs). Yet, the factors that control LLPC specification and survival remain poorly resolved. Using intravital two-photon imaging, we find that in contrast to most plasma cells (PCs) in the bone marrow (BM), LLPCs are uniquely sessile and organized into clusters that are dependent on APRIL, an important survival factor.

View Article and Find Full Text PDF

The fusion peptide (FP) on the HIV-1 envelope (Env) trimer can be targeted by broadly neutralizing antibodies (bNAbs). Here, we evaluated the ability of a human FP-directed bNAb, VRC34.01, along with two vaccine-elicited anti-FP rhesus macaque mAbs, DFPH-a.

View Article and Find Full Text PDF

Agents that can simultaneously activate latent HIV, increase immune activation and enhance the killing of latently-infected cells represent promising approaches for HIV cure. Here, we develop and evaluate a trispecific antibody (Ab), N6/αCD3-αCD28, that targets three independent proteins: (1) the HIV envelope via the broadly reactive CD4-binding site Ab, N6; (2) the T cell antigen CD3; and (3) the co-stimulatory molecule CD28. We find that the trispecific significantly increases antigen-specific T-cell activation and cytokine release in both CD4 and CD8 T cells.

View Article and Find Full Text PDF

Senescent vascular smooth muscle cells (VSMCs) accumulate in the vasculature with age and tissue damage and secrete factors that promote atherosclerotic plaque vulnerability and disease. Here, we report increased levels and activity of dipeptidyl peptidase 4 (DPP4), a serine protease, in senescent VSMCs. Analysis of the conditioned media from senescent VSMCs revealed a unique senescence-associated secretory phenotype (SASP) signature comprising many complement and coagulation factors; silencing or inhibiting DPP4 reduced these factors and increased cell death.

View Article and Find Full Text PDF

Durable serological memory following vaccination is critically dependent on the production and survival of long-lived plasma cells (LLPCs). Yet, the factors that control LLPC specification and survival remain poorly resolved. Using intra-vital two-photon imaging, we find that in contrast to most plasma cells in the bone marrow, LLPCs are uniquely sessile and organized into clusters that are dependent on April, an important survival factor.

View Article and Find Full Text PDF

Broadly neutralizing antibodies (bNAbs) represent an alternative to drug therapy for the treatment of HIV-1 infection. Immunotherapy with single bNAbs often leads to emergence of escape variants, suggesting a potential benefit of combination bNAb therapy. Here, a trispecific bNAb reduces viremia 100- to 1000-fold in viremic SHIV-infected macaques.

View Article and Find Full Text PDF

Soluble "SOSIP"-stabilized envelope (Env) trimers are promising HIV-vaccine immunogens. However, they induce high-titer responses against the glycan-free trimer base, which is occluded on native virions. To delineate the effect on base responses of priming with immunogens targeting the fusion peptide (FP) site of vulnerability, here, we quantify the prevalence of trimer-base antibody responses in 49 non-human primates immunized with various SOSIP-stabilized Env trimers and FP-carrier conjugates.

View Article and Find Full Text PDF

Even after more than 30 years since its discovery, there is no cure for HIV-1 infection. Combination antiretroviral therapy (cART) is currently the only HIV-1 infection management option in clinics. Despite its success in suppressing viral replication and converting HIV-1 from a lethal infection to a chronic and manageable disease, cART treatment is life long and long-term use can result in major drawbacks such as high cost, multiple side effects, and an increase in the development of multidrug-resistant escape mutants.

View Article and Find Full Text PDF