Publications by authors named "Maximilian W D Raas"

Across life, structural maintenance of chromosomes (SMC) complexes organize chromosomes. While most prokaryotes have one, eukaryotes usually possess four (condensin I, condensin II, cohesin, and SMC5/6), shaping their considerably larger genomes. Although essential, SMC complexes differ among model eukaryotes, suggesting underexplored diversity.

View Article and Find Full Text PDF

Polycomb repressive complexes PRC1 and PRC2 control lineage-specific gene silencing during early embryogenesis. To better understand Polycomb biology, we profile the proximal interactome (proxeome) of multiple PRC1 and PRC2 subunits in mouse embryonic stem cells (mESCs). This analysis identifies >100 proteins proximal to PRC1 and PRC2, including transcription factors and RNA-binding proteins.

View Article and Find Full Text PDF

Chromosome alignment during mitosis can occur as a consequence of bi-orientation or is assisted by the CENP-E (kinesin-7) motor at kinetochores. We previously found that Indian muntjac chromosomes with larger kinetochores bi-orient more efficiently and are biased to align in a CENP-E-independent manner, suggesting that CENP-E dependence for chromosome alignment negatively correlates with kinetochore size. Here, we used targeted phylogenetic profiling of CENP-E in monocentric (localized centromeres) and holocentric (centromeres spanning the entire chromosome length) clades to test this hypothesis at an evolutionary scale.

View Article and Find Full Text PDF

Unlabelled: Transmission of genetic material from one generation to the next is a fundamental feature of all living cells. In eukaryotes, a macromolecular complex called the kinetochore plays crucial roles during chromosome segregation by linking chromosomes to spindle microtubules. Little is known about this process in evolutionarily diverse protists.

View Article and Find Full Text PDF

Polycomb group proteins, as part of the Polycomb repressive complexes, are essential in gene repression through chromatin compaction by canonical PRC1, mono-ubiquitylation of histone H2A by non-canonical PRC1 and tri-methylation of histone H3K27 by PRC2. Despite prevalent models emphasizing tight functional coupling between PRC1 and PRC2, it remains unclear whether this paradigm indeed reflects the evolution and functioning of these complexes. Here, we conduct a comprehensive analysis of the presence or absence of cPRC1, nPRC1 and PRC2 across the entire eukaryotic tree of life, and find that both complexes were present in the Last Eukaryotic Common Ancestor (LECA).

View Article and Find Full Text PDF

Correct chromosome segregation during cell division depends on proper connections between spindle microtubules and kinetochores. During prometaphase, kinetochores are temporarily covered with a dense protein meshwork known as the fibrous corona. Formed by oligomerization of ROD/ZW10/ZWILCH-SPINDLY (RZZ-S) complexes, the fibrous corona promotes spindle assembly, chromosome orientation, and spindle checkpoint signaling.

View Article and Find Full Text PDF
Article Synopsis
  • Joint DNA molecules from DNA replication and repair can lead to ultrafine DNA bridges (UFBs) during mitosis, which hinder sister chromatid separation.
  • The study highlights the importance of PICH, a DNA translocase, in resolving UFBs and identifies FIRRM as a key regulator that interacts with FIGNL1, an ATPase involved in DNA processes.
  • Inhibition of FIRRM or FIGNL1 causes UFBs to form and disrupts RAD51 dynamics at replication forks, leading to DNA damage and reliance on PICH for cell survival.
View Article and Find Full Text PDF

Through its fermentative capacities, Saccharomyces cerevisiae was central in the development of civilisation during the Neolithic period, and the yeast remains of importance in industry and biotechnology, giving rise to bona fide domesticated populations. Here, we conduct a population genomic study of domesticated and wild populations of S. cerevisiae.

View Article and Find Full Text PDF

DNA methylation has long been considered the primary epigenetic mediator of genomic imprinting in mammals. Recent epigenetic profiling during early mouse development revealed the presence of domains of trimethylation of lysine 27 on histone H3 (H3K27me3) and chromatin compaction specifically at the maternally derived allele, independent of DNA methylation. Within these domains, genes are exclusively expressed from the paternally derived allele.

View Article and Find Full Text PDF
Article Synopsis
  • New strategies for visualizing Candida biofilms are essential for studying their structure and antifungal responses.
  • Whole slide imaging (WSI) was used to analyze biofilm formation in three Candida species, revealing how antifungals affected biofilm size and structure.
  • WSI provided reliable imaging at both large scales and single-cell levels, making it a valuable tool for studying fungal biofilm growth.
View Article and Find Full Text PDF

Histological analysis of hepatic tissue specimens is essential for evaluating the pathology of several liver disorders such as chronic liver diseases, hepatocellular carcinomas, liver steatosis, and infectious liver diseases. Manual examination of histological slides on the microscope is a classically used method to study these disorders. However, it is considered time-consuming, limited, and associated with intra- and inter-observer variability.

View Article and Find Full Text PDF