Cell therapies, including tumor antigen-loaded dendritic cells used as therapeutic cancer vaccines, offer treatment options for patients with malignancies. We evaluated the feasibility, safety, immunogenicity, and clinical activity of adjuvant vaccination with Wilms' tumor protein (WT1) mRNA-electroporated autologous dendritic cells (WT1-mRNA/DC) in a single-arm phase I/II clinical study of patients with advanced solid tumors receiving standard therapy. Disease status and immune reactivity were evaluated after 8 weeks and 6 months.
View Article and Find Full Text PDFMalignant pleural mesothelioma (MPM) is an aggressive cancer with a very poor prognosis. Recently, immune checkpoint inhibition (ICI) has taken center stage in the currently ongoing revolution that is changing standard-of-care treatment for several malignancies, including MPM. As multiple arguments and accumulating lines of evidence are in support of the existence of a therapeutic synergism between chemotherapy and immunotherapy, as well as between different classes of immunotherapeutics, we designed a multicenter, single-arm, phase I/II trial in which both programmed-death-ligand 1 (PD-L1) inhibition and dendritic cell (DC) vaccination are integrated in the first-line conventional platinum/pemetrexed-based treatment scheme for epithelioid MPM patients (Immuno-MESODEC, ClinicalTrials.
View Article and Find Full Text PDFIntroduction: Diffuse intrinsic pontine glioma (DIPG) and paediatric high-grade glioma (pHGG) are aggressive glial tumours, for which conventional treatment modalities fall short. Dendritic cell (DC)-based immunotherapy is being investigated as a promising and safe adjuvant therapy. The Wilms' tumour protein (WT1) is a potent target for this type of antigen-specific immunotherapy and is overexpressed in DIPG and pHGG.
View Article and Find Full Text PDFTo study the biodistribution of new chemical and biological entities, an in vitro model of the blood-brain barrier (BBB) may become an essential tool during early phases of drug discovery. Here, we present a proof-of-concept of an in-house designed three-dimensional BBB biochip designed by us. This three-dimensional dynamic BBB model consists of endothelial cells and astrocytes, co-cultured on opposing sides of a polymer-coated membrane under flow mimicking blood flow.
View Article and Find Full Text PDFThe central nervous system (CNS) is considered to be an immunologically unique site, in large part given its extensive protection by the blood-brain barrier (BBB). As our knowledge of the complex interaction between the peripheral immune system and the CNS expands, the mechanisms of immune privilege are being refined. Here, we studied the interaction of dendritic cells (DCs) with the BBB in steady-state conditions and observed that transmigrated DCs display an activated phenotype and stronger T cell-stimulatory capacity as compared to non-migrating DCs.
View Article and Find Full Text PDFMessenger RNA (mRNA) electroporation is a powerful tool for transient genetic modification of cells. This non-viral method of genetic engineering has been widely used in immunotherapy. Electroporation allows fine-tuning of transfection protocols for each cell type as well as introduction of multiple protein-coding mRNAs at once.
View Article and Find Full Text PDFCancers (Basel)
September 2019
Dendritic cell-based and other vaccination strategies that use the patient's own immune system for the treatment of cancer are gaining momentum. Most studies of therapeutic cancer vaccination have been performed in adults. However, since cancer is one of the leading causes of death among children past infancy in the Western world, the hope is that this form of active specific immunotherapy can play an important role in the pediatric population as well.
View Article and Find Full Text PDFBMJ Open
September 2019
Introduction: Based on the advances in the treatment of multiple sclerosis (MS), currently available disease-modifying treatments (DMT) have positively influenced the disease course of MS. However, the efficacy of DMT is highly variable and increasing treatment efficacy comes with a more severe risk profile. Hence, the unmet need for safer and more selective treatments remains.
View Article and Find Full Text PDFBackground: Although effective in reducing relapse rate and delaying progression, current therapies for multiple sclerosis (MS) do not completely halt disease progression. T cell autoimmunity to myelin antigens is considered one of the main mechanisms driving MS. It is characterized by autoreactivity to disease-initiating myelin antigen epitope(s), followed by a cascade of epitope spreading, which are both strongly patient-dependent.
View Article and Find Full Text PDFThe use of tolerance-inducing dendritic cells (tolDCs) has been proven to be safe and well tolerated in the treatment of autoimmune diseases. Nevertheless, several challenges remain, including finding ways to facilitate the migration of cell therapeutic products to lymph nodes, and the site of inflammation. In the treatment of neuroinflammatory diseases, such as multiple sclerosis (MS), the blood-brain barrier (BBB) represents a major obstacle to the delivery of therapeutic agents to the inflamed central nervous system (CNS).
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
March 2018
Migration of dendritic cells (DC) to the central nervous system (CNS) is a critical event in the pathogenesis of multiple sclerosis (MS). While up until now, research has mainly focused on the transmigration of DC through the blood-brain barrier, experimental evidence points out that also the choroid plexus and meningeal vessels represent important gateways to the CNS, especially in early disease stages. On the other hand, DC can exit the CNS to maintain immunological tolerance to patterns expressed in the CNS, a process that is perturbed in MS.
View Article and Find Full Text PDFMany neuroinflammatory diseases are characterized by massive immune cell infiltration into the central nervous system. Identifying the underlying mechanisms could aid in the development of therapeutic strategies specifically interfering with inflammatory cell trafficking. To achieve this, we implemented and validated a blood-brain barrier (BBB) model to study chemokine secretion, chemokine transport, and leukocyte trafficking in vitro.
View Article and Find Full Text PDF