Cortical circuit activity is controlled by GABA-mediated inhibition in a spatiotemporally restricted manner. GABA receptor (GABAR) signalling exerts powerful slow inhibition that controls synaptic, dendritic and neuronal activity. But, how GABARs contribute to circuit-level inhibition over the lifespan of rodents and humans is poorly understood.
View Article and Find Full Text PDFObjective: Limbic encephalitis with leucine-rich glioma inactivated 1 (LGI1) protein autoantibodies is associated with cognitive impairment, psychiatric symptoms, and seizures, including faciobrachial dystonic seizures (FBDS). Patient-derived LGI1-autoantibodies cause isolated symptoms of memory deficits in mice and seizures in rats. Using a multimodal experimental approach, we set out to improve the validity of existing in vivo rodent models to further recapitulate the full clinical syndrome of anti-LGI1 antibody mediated disease.
View Article and Find Full Text PDFOne striking clinical hallmark in patients with autoantibodies to leucine-rich glioma inactivated 1 (LGI1) is the very frequent focal seizure semiologies, including faciobrachial dystonic seizures (FBDS), in addition to the amnesia. Polyclonal serum IgGs have successfully modelled the cognitive changes in vivo but not seizures. Hence, it remains unclear whether LGI1-autoantibodies are sufficient to cause seizures.
View Article and Find Full Text PDFAutoantibodies targeting the GABAA receptor (GABAAR) hallmark an autoimmune encephalitis presenting with frequent seizures and psychomotor abnormalities. Their pathogenic role is still not well-defined, given the common overlap with further autoantibodies and the lack of patient-derived mAbs. Five GABAAR mAbs from cerebrospinal fluid cells bound to various epitopes involving the α1 and γ2 receptor subunits, with variable binding strength and partial competition.
View Article and Find Full Text PDFAnn Clin Transl Neurol
June 2020
Objective: The amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is increasingly recognized as a therapeutic target in drug-refractory pediatric epilepsy. Perampanel (PER) is a non-competitive AMPAR antagonist, and pre-clinical studies have shown the AMPAR-mediated anticonvulsant effects of decanoic acid (DEC), a major medium-chain fatty acid provided in the medium-chain triglyceride ketogenic diet.
Methods: Using brain tissue resected from children with intractable epilepsy, we recorded the effects of PER and DEC in vitro.