The biological nitrogen cycle involves step-wise reduction of nitrogen oxides to ammonium salts and oxidation of ammonia back to nitrites and nitrates by plants and bacteria. Neither process has been thought to have relevance to mammalian physiology; however in recent years the salivary bacterial reduction of nitrate to nitrite has been recognized as an important metabolic conversion in humans. Several enteric bacteria have also shown the ability of catalytic reduction of nitrate to ammonia via nitrite during dissimilatory respiration; however, the importance of this pathway in bacterial species colonizing the human intestine has been little studied.
View Article and Find Full Text PDFPlant nonsymbiotic hemoglobins possess hexacoordinate heme geometry similar to that of the heme protein neuroglobin. We recently discovered that deoxygenated neuroglobin converts nitrite to nitric oxide (NO), an important signaling molecule involved in many processes in plants. We sought to determine whether Arabidopsis thaliana nonsymbiotic hemoglobins classes 1 and 2 (AHb1 and AHb2, respectively) might function as nitrite reductases.
View Article and Find Full Text PDFNeuroglobin protects neurons from hypoxia in vitro and in vivo; however, the underlying mechanisms for this effect remain poorly understood. Most of the neuroglobin is present in a hexacoordinate state with proximal and distal histidines in the heme pocket directly bound to the heme iron. At equilibrium, the concentration of the five-coordinate neuroglobin remains very low (0.
View Article and Find Full Text PDFNeuroglobin is a highly conserved hemoprotein of uncertain physiological function that evolved from a common ancestor to hemoglobin and myoglobin. It possesses a six-coordinate heme geometry with proximal and distal histidines directly bound to the heme iron, although coordination of the sixth ligand is reversible. We show that deoxygenated human neuroglobin reacts with nitrite to form nitric oxide (NO).
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
February 2009
Growing evidence indicates that nitrite, NO2-, serves as a circulating reservoir of nitric oxide (NO) bioactivity that is activated during physiological and pathological hypoxia. One of the intravascular mechanisms for nitrite conversion to NO is a chemical nitrite reductase activity of deoxyhemoglobin. The rate of NO production from this reaction is increased when hemoglobin is in the R conformation.
View Article and Find Full Text PDFNitric oxide (NO) is a physiological mediator synthesized by NO synthases (NOS). Despite their structural similarity, endothelial NOS (eNOS) has a 6-fold lower NO synthesis activity and 6-16-fold lower cytochrome c reductase activity than neuronal NOS (nNOS), implying significantly different electron transfer capacities. We utilized purified reductase domain constructs of either enzyme (bovine eNOSr and rat nNOSr) to investigate the following three mechanisms that may control their electron transfer: (i) the set point and control of a two-state conformational equilibrium of their FMN subdomains; (ii) the flavin midpoint reduction potentials; and (iii) the kinetics of NOSr-NADP+ interactions.
View Article and Find Full Text PDFImidazopyridine derivates were recently shown to be a novel class of selective and arginine-competitive inhibitors of inducible nitric-oxide synthase (iNOS), and 2-[2-(4-methoxypyridin-2-yl)-ethyl]-3H-imidazo[4,5-b]pyridine (BYK191023) was found to have very high selectivity in enzymatic and cellular models ( Mol Pharmacol 69: 328-337, 2006 ). Here, we show that BYK191023 irreversibly inactivates murine iNOS in an NADPH- and time-dependent manner, whereas it acts only as a reversible l-arginine-competitive inhibitor in the absence of NADPH or during anaerobic preincubation. Time-dependent irreversible inhibition by BYK191023 could also be demonstrated in intact cells using the RAW macrophage or iNOS-overexpressing human embryonic kidney 293 cell lines.
View Article and Find Full Text PDFHemoglobin A (HbA) is an allosterically regulated nitrite reductase that reduces nitrite to NO under physiological hypoxia. The efficiency of this reaction is modulated by two intrinsic and opposing properties: availability of unliganded ferrous hemes and R-state character of the hemoglobin tetramer. Nitrite is reduced by deoxygenated ferrous hemes, such that heme deoxygenation increases the rate of NO generation.
View Article and Find Full Text PDFThe C-terminal tail (CT) of neuronal nitric oxide synthase (nNOS) is a regulatory element that suppresses nNOS activities in the absence of bound calmodulin (CaM). A crystal structure of the nNOS reductase domain (nNOSr) (Garcin, E. D.
View Article and Find Full Text PDFThe nitric oxide synthase of Drosophila melanogaster (dNOS) participates in essential developmental and behavioral aspects of the fruit fly, but little is known about dNOS catalysis and regulation. To address this, we expressed a construct comprising the dNOS reductase domain and its adjacent calmodulin (CaM) binding site (dNOSr) and characterized the protein regarding its catalytic, kinetic, and regulatory properties. The Ca2+ concentration required for CaM binding to dNOSr was between that of the mammalian endothelial and neuronal NOS enzymes.
View Article and Find Full Text PDFThe neuronal nitric-oxide synthase (nNOS) flavoprotein domain (nNOSr) contains regulatory elements that repress its electron flux in the absence of bound calmodulin (CaM). The repression also requires bound NADP(H), but the mechanism is unclear. The crystal structure of a CaM-free nNOSr revealed an ionic interaction between Arg(1400) in the C-terminal tail regulatory element and the 2'-phosphate group of bound NADP(H).
View Article and Find Full Text PDFThree nitric-oxide synthase (NOS) isozymes play crucial, but distinct, roles in neurotransmission, vascular homeostasis, and host defense, by catalyzing Ca(2+)/calmodulin-triggered NO synthesis. Here, we address current questions regarding NOS activity and regulation by combining mutagenesis and biochemistry with crystal structure determination of a fully assembled, electron-supplying, neuronal NOS reductase dimer. By integrating these results, we structurally elucidate the unique mechanisms for isozyme-specific regulation of electron transfer in NOS.
View Article and Find Full Text PDF