Publications by authors named "Matthieu Raveau"

Article Synopsis
  • - Increased lactate levels from glycolysis are being studied as potential markers for metabolic changes in neurons, linked to a drop in brain pH, which has been associated with various neuropsychiatric disorders like schizophrenia and autism.
  • - Research shows that these pH and lactate changes are common across different animal models, including those for depression, epilepsy, and Alzheimer's disease, though findings vary, particularly within the autism spectrum.
  • - A large-scale analysis indicated that higher lactate levels correlate with worse working memory performance, suggesting that altered brain chemistry might reflect underlying conditions across multiple disorders.
View Article and Find Full Text PDF

CUX2 gene encodes a transcription factor that controls neuronal proliferation, dendrite branching and synapse formation, locating at the epilepsy-associated chromosomal region 12q24 that we previously identified by a genome-wide association study (GWAS) in Japanese population. A CUX2 recurrent de novo variant p.E590K has been described in patients with rare epileptic encephalopathies and the gene is a candidate for the locus, however the mutation may not be enough to generate the genome-wide significance in the GWAS and whether CUX2 variants appear in other types of epilepsies and physiopathological mechanisms are remained to be investigated.

View Article and Find Full Text PDF

Down syndrome is a complex genetic disorder caused by the presence of three copies of the chromosome 21 in humans. The most common models, carrying extra-copies of overlapping fragments of mouse chromosome 16 that is syntenic to human chromosome 21, are Ts2Cje, Ts1Cje and Ts1Rhr mice. In electrophysiological analyses using hippocampal slices, we found that the later phase of the depolarization during tetanic stimulation, which was regulated by GABA receptors, was significantly smaller in Ts1Cje and Ts2Cje mice than that in WT controls but not in Ts1Rhr mice.

View Article and Find Full Text PDF

Objective: Neurodevelopmental disorders (NDDs) often associate with epilepsy or craniofacial malformations. Recent large-scale DNA analyses identified hundreds of candidate genes for NDDs, but a large portion of the cases still remain unexplained. We aimed to identify novel candidate genes for NDDs.

View Article and Find Full Text PDF

Dravet syndrome is a severe infantile-onset epileptic encephalopathy which begins with febrile seizures and is caused by heterozygous loss-of-function mutations of the voltage-gated sodium channel gene SCN1A. We designed a CRISPR-based gene therapy for Scn1a-haplodeficient mice using multiple guide RNAs (gRNAs) in the promoter regions together with the nuclease-deficient Cas9 fused to transcription activators (dCas9-VPR) to trigger the transcription of SCN1A or Scn1a in vitro. We tested the effect of this strategy in vivo using an adeno-associated virus (AAV) mediated system targeting inhibitory neurons and investigating febrile seizures and behavioral parameters.

View Article and Find Full Text PDF

In Ts1Rhr, a Down syndrome model mouse, the airway ciliary beatings are impaired; that is, decreases in ciliary beat frequency (CBF) and ciliary bend angle (CBA, an index of ciliary beat amplitude)). A resumption to two copies of the gene on the Ts1Rhr trisomic segment (Ts1Rhr:) rescues the decreases in CBF and CBA that occur in Ts1Rhr. In airway cilia, upon stimulation with procaterol (a β-agonist), the CBF increase is slower over the time course than the CBA increase because of cAMP degradation by Ca/calmodulin-dependent phosphodiesterase 1 (PDE1) existing in the metabolon regulating CBF.

View Article and Find Full Text PDF

STXBP1 and SCN2A gene mutations are observed in patients with epilepsies, although the circuit basis remains elusive. Here, we show that mice with haplodeficiency for these genes exhibit absence seizures with spike-and-wave discharges (SWDs) initiated by reduced cortical excitatory transmission into the striatum. Mice deficient for Stxbp1 or Scn2a in cortico-striatal but not cortico-thalamic neurons reproduce SWDs.

View Article and Find Full Text PDF

Background: Mutations of the gene encoding a voltage-gated sodium channel alpha-II subunit Nav1.2 are associated with neurological disorders such as epilepsy, autism spectrum disorders, intellectual disability, and schizophrenia. However, causal relationships and pathogenic mechanisms underlying these neurological defects, especially social and psychiatric features, remain to be elucidated.

View Article and Find Full Text PDF

Down syndrome, the leading genetic cause of intellectual disability, results from an extra-copy of chromosome 21. Mice engineered to model this aneuploidy exhibit Down syndrome-like memory deficits in spatial and contextual tasks. While abnormal neuronal function has been identified in these models, most studies have relied on measures.

View Article and Find Full Text PDF

Mutations and copy number variants affecting DYRK1A gene encoding the dual-specificity tyrosine phosphorylation-regulated kinase 1A are among the most frequent genetic causes of neurodevelopmental disorders including autism spectrum disorder (ASD) associated with microcephaly, febrile seizures and severe speech acquisition delay. Here we developed a mouse model harboring a frame-shift mutation in Dyrk1a resulting in a protein truncation and elimination of its kinase activity site. Dyrk1a mice showed significant impairments in cognition and cognitive flexibility, communicative ultrasonic vocalizations, and social contacts.

View Article and Find Full Text PDF

Ts1Cje mice have a segmental trisomy of chromosome 16 that is orthologous to human chromosome 21 and display Down syndrome-like cognitive impairments. Despite the occurrence of affective and emotional impairments in patients with Down syndrome, these parameters are poorly documented in Down syndrome mouse models, including Ts1Cje mice. Here, we conducted comprehensive behavioral analyses, including anxiety-, sociability-, and depression-related tasks, and biochemical analyses of monoamines and their metabolites in Ts1Cje mice.

View Article and Find Full Text PDF

Down syndrome is a leading cause of congenital intellectual disability caused by an additional copy of the chromosome 21. Patients display physiological and morphological changes affecting the brain and its function. Previously we showed that Ts1Cje and Ts2Cje, Down syndrome mouse models carrying overlapping trisomic segments of different length, show similar ventriculomegaly and neurogenesis dysfunction leading to the hypothesis of a cause-consequence relationship between these phenotypes.

View Article and Find Full Text PDF

Partial monosomy 21 (PM21) is a rare chromosomal abnormality that is characterized by the loss of a variable segment along human chromosome 21 (Hsa21). The clinical phenotypes of this loss are heterogeneous and range from mild alterations to lethal consequences, depending on the affected region of Hsa21. The most common features include intellectual disabilities, craniofacial dysmorphology, short stature, and muscular and cardiac defects.

View Article and Find Full Text PDF

Down syndrome (DS) leads to complex phenotypes and is the main genetic cause of birth defects and heart diseases. The Ts65Dn DS mouse model is trisomic for the distal part of mouse chromosome 16 and displays similar features with post-natal lethality and cardiovascular defects. In order to better understand these defects, we defined electrocardiogram (ECG) with a precordial set-up, and we found conduction defects and modifications in wave shape, amplitudes, and durations in Ts65Dn mice.

View Article and Find Full Text PDF

Down syndrome (DS) is the most frequent genetic disorder leading to intellectual disabilities and is caused by three copies of human chromosome 21. Mouse models are widely used to better understand the physiopathology in DS or to test new therapeutic approaches. The older and the most widely used mouse models are the trisomic Ts65Dn and the Ts1Cje mice.

View Article and Find Full Text PDF

Changes in the number of chromosomes, but also variations in the copy number of chromosomal regions have been described in various pathological conditions, such as cancer and aneuploidy, but also in normal physiological condition. Our classical view of DNA replication and mitotic preservation of the chromosomal integrity is now challenged as new technologies allow us to observe such mosaic somatic changes in copy number affecting regions of chromosomes with various sizes. In order to go further in the understanding of copy number influence in normal condition we could take advantage of the novel strategy called Targeted Asymmetric Sister Chromatin Event of Recombination (TASCER) to induce recombination during the G2 phase so that we can generate deletions and duplications of regions of interest prior to mitosis.

View Article and Find Full Text PDF