A spinal cord injury (SCI) disrupts the neuronal projections from the brain to the region of the spinal cord that produces walking, leading to various degrees of paralysis. Here, we aimed to identify brain regions that steer the recovery of walking after incomplete SCI and that could be targeted to augment this recovery. To uncover these regions, we constructed a space-time brain-wide atlas of transcriptionally active and spinal cord-projecting neurons underlying the recovery of walking after incomplete SCI.
View Article and Find Full Text PDFHere, we introduce the Tabulae Paralytica-a compilation of four atlases of spinal cord injury (SCI) comprising a single-nucleus transcriptome atlas of half a million cells, a multiome atlas pairing transcriptomic and epigenomic measurements within the same nuclei, and two spatial transcriptomic atlases of the injured spinal cord spanning four spatial and temporal dimensions. We integrated these atlases into a common framework to dissect the molecular logic that governs the responses to injury within the spinal cord. The Tabulae Paralytica uncovered new biological principles that dictate the consequences of SCI, including conserved and divergent neuronal responses to injury; the priming of specific neuronal subpopulations to upregulate circuit-reorganizing programs after injury; an inverse relationship between neuronal stress responses and the activation of circuit reorganization programs; the necessity of re-establishing a tripartite neuroprotective barrier between immune-privileged and extra-neural environments after SCI and a failure to form this barrier in old mice.
View Article and Find Full Text PDFNeurological disorders, including spinal cord injury, result in hemodynamic instability due to the disruption of supraspinal projections to the sympathetic circuits located in the spinal cord. We recently developed a preclinical model that allows the identification of the topology and dynamics through which sympathetic circuits modulate hemodynamics, supporting the development of a neuroprosthetic baroreflex that precisely controls blood pressure in rats, monkeys and humans with spinal cord injuries. Here, we describe the continuous monitoring of arterial blood pressure and sympathetic nerve activity over several months in preclinical models of chronic neurological disorders using commercially available telemetry technologies, as well as optogenetic and neuronal tract-tracing procedures specifically adapted to the sympathetic circuitry.
View Article and Find Full Text PDFA spinal cord injury disrupts communication between the brain and the circuits in the spinal cord that regulate neurological functions. The consequences are permanent paralysis, loss of sensation and debilitating dysautonomia. However, the majority of circuits located above and below the injury remain anatomically intact, and these circuits can reorganize naturally to improve function.
View Article and Find Full Text PDFBackground And Purpose: Breast intra operative radiation therapy has been evaluated with different systems delivering 20-21 Gy with treatment times around 30 min. Papillon + Contact X-ray machine was designed to produce a 50 kVp beam with a high dose rate ≥ 15 Gy/minute. A pilot study with the first prototype was conducted in Nice.
View Article and Find Full Text PDFA spinal cord injury interrupts pathways from the brain and brainstem that project to the lumbar spinal cord, leading to paralysis. Here we show that spatiotemporal epidural electrical stimulation (EES) of the lumbar spinal cord applied during neurorehabilitation (EES) restored walking in nine individuals with chronic spinal cord injury. This recovery involved a reduction in neuronal activity in the lumbar spinal cord of humans during walking.
View Article and Find Full Text PDFNeurological damage caused by spinal cord injury in humans has been observed for over three thousand years and impacts the lives of several hundred thousand people worldwide. Despite this prevalence and its associated consequences, there is no treatment to repair the injured spinal cord. Evidence gathered over the last several decades has provided mechanistic information on the complex cascade of events following traumatic spinal cord injury and this is paving the way towards mechanism based repair strategies.
View Article and Find Full Text PDFDifferential expression analysis in single-cell transcriptomics enables the dissection of cell-type-specific responses to perturbations such as disease, trauma, or experimental manipulations. While many statistical methods are available to identify differentially expressed genes, the principles that distinguish these methods and their performance remain unclear. Here, we show that the relative performance of these methods is contingent on their ability to account for variation between biological replicates.
View Article and Find Full Text PDFAdvances in single-cell genomics now enable large-scale comparisons of cell states across two or more experimental conditions. Numerous statistical tools are available to identify individual genes, proteins or chromatin regions that differ between conditions, but many experiments require inferences at the level of cell types, as opposed to individual analytes. We developed Augur to prioritize the cell types within a complex tissue that are most responsive to an experimental perturbation.
View Article and Find Full Text PDFMany connected devices are expected to be deployed during the next few years. Energy harvesting appears to be a good solution to power these devices but is not a reliable power source due to the time-varying nature of most energy sources. It is possible to harvest energy from multiple energy sources to tackle this problem, thus increasing the amount and the consistency of harvested energy.
View Article and Find Full Text PDFSpinal cord injury (SCI) induces haemodynamic instability that threatens survival, impairs neurological recovery, increases the risk of cardiovascular disease, and reduces quality of life. Haemodynamic instability in this context is due to the interruption of supraspinal efferent commands to sympathetic circuits located in the spinal cord, which prevents the natural baroreflex from controlling these circuits to adjust peripheral vascular resistance. Epidural electrical stimulation (EES) of the spinal cord has been shown to compensate for interrupted supraspinal commands to motor circuits below the injury, and restored walking after paralysis.
View Article and Find Full Text PDFSensors (Basel)
January 2021
LoRa is popular for internet of things applications as this communication technology offers both a long range and a low power consumption. However, LoRaWAN, the standard MAC protocol that uses LoRa as physical layer, has the bottleneck of a high downlink latency to achieve energy efficiency. To overcome this drawback we explore the use of wake-up radio combined with LoRa, and propose an adequate MAC protocol that takes profit of both these heterogeneous and complementary technologies.
View Article and Find Full Text PDFWe present Augur, a method to prioritize the cell types most responsive to biological perturbations in single-cell data. Augur employs a machine-learning framework to quantify the separability of perturbed and unperturbed cells within a high-dimensional space. We validate our method on single-cell RNA sequencing, chromatin accessibility and imaging transcriptomics datasets, and show that Augur outperforms existing methods based on differential gene expression.
View Article and Find Full Text PDFWireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters.
View Article and Find Full Text PDFBackground: The aim of this study was to assess the correlation between global wall thickening (GWT) obtained by gated-single photon emission computed tomography (SPECT) and echocardiographic measures [ejection fraction (EF), global longitudinal strain (GLS), and strain rate (GLSR)] and to compare their prognostic value for all-cause mortality.
Methods And Results: Seventy-four patients with referral for dipyridamole myocardial perfusion SPECT were prospectively included and underwent transthoracic echocardiography to measure left ventricular EF, GLS, and GLSR. The strongest correlation with GWT was for EF (R = 0.
Cardiovasc Diabetol
June 2013
Aims: Although dipyridamole is a widely used pharmacological stress agent, the direct effects on myocardium are not entirely known. Diabetic cardiomyopathy can be investigated by 2D-strain echocardiography. The aim of this study was to assess myocardial functional reserve after dipyridamole infusion using speckle-tracking echocardiography.
View Article and Find Full Text PDF