Publications by authors named "Matthias Zwick"

Objective: We used data from the placebo arm of the Safety and Efficacy of Nintedanib in Systemic Sclerosis (SENSCIS) trial to determine the prognostic/predictive significance of peripheral blood cell (PBC) transcript modules for the course of forced vital capacity (FVC) in patients with systemic sclerosis-associated interstitial lung disease (SSc-ILD) with and without mycophenolate mofetil (MMF) treatment.

Methods: Patients had SSc-ILD with first non-Raynaud symptom within 7 years. MMF treatment was permitted if taken at a stable dose for ≥6 months.

View Article and Find Full Text PDF

Motivation: The NanoString™ nCounter® technology platform is a widely used targeted quantification platform for the analysis of gene expression of up to ∼800 genes. Whereas the software tools by the manufacturer can perform the analysis in an interactive and GUI driven approach, there is no portable and user-friendly workflow available that can be used to perform reproducible analysis of multiple samples simultaneously in a scalable fashion on different computing infrastructures.

Results: Here, we present the nf-core/nanostring open-source pipeline to perform a comprehensive analysis including quality control and additional features such as expression visualization, annotation with additional metadata and input creation for differential gene expression analysis.

View Article and Find Full Text PDF

Aims: Sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular outcomes in diverse patient populations, but their mechanism of action requires further study. The aim is to explore the effect of empagliflozin on the circulating levels of intracellular proteins in patients with heart failure, using large-scale proteomics.

Methods And Results: Over 1250 circulating proteins were measured at baseline, Week 12, and Week 52 in 1134 patients from EMPEROR-Reduced and EMPEROR-Preserved, using the Olink® Explore 1536 platform.

View Article and Find Full Text PDF

Our knowledge of complex pathological mechanisms underlying organ fibrosis is predominantly derived from animal studies. However, relevance of animal models for human disease is limited; therefore, an ex vivo model of human precision-cut tissue slices (PCTS) might become an indispensable tool in fibrosis research and drug development by bridging the animal-human translational gap. This study, presented as two parts, provides comprehensive characterization of the dynamic transcriptional changes in PCTS during culture by RNA sequencing.

View Article and Find Full Text PDF

We present data concerning the distribution of scientific publications for human protein-coding genes together with their protein products and genetic relevance. We annotated the gene2pubmed dataset Maglott et al., 2007 provided by the NCBI (National Center for Biotechnology Information) with publication years, genetic metadata corresponding to Online Mendelian Inheritance in Man (OMIM) Hamosh et al.

View Article and Find Full Text PDF

Biomedical scientists tend to focus on only a small fraction of the proteins encoded by the human genome despite overwhelming genetic evidence that many understudied proteins are important for human disease. One of the best ways to interrogate the function of a protein and to determine its relevance as a drug target is by using a pharmacological modulator, such as a chemical probe or an antibody. If these tools were available for most human proteins, it should be possible to translate the tremendous advances in genomics into a greater understanding of human health and disease, and catalyze the creation of innovative new medicines.

View Article and Find Full Text PDF

Background: The ability to generate recombinant drug target proteins is important for drug discovery research as it facilitates the investigation of drug-target-interactions in vitro. To accomplish this, the target's exact protein sequence is required. Public databases, such as Ensembl, UniProt and RefSeq, are extensive protein and nucleotide sequence repositories.

View Article and Find Full Text PDF

The cystic fibrosis transmembrane conductance regulator (CFTR, ABCC7), mutations of which cause cystic fibrosis, belongs to the ATP-binding cassette (ABC) transporter family and works as a channel for small anions, such as chloride and bicarbonate. Anion channel activity is known to depend on phosphorylation by cAMP-dependent protein kinase A (PKA) and CFTR-ATPase activity. Whereas anion channel activity has been extensively investigated, phosphorylation and CFTR-ATPase activity are still poorly understood.

View Article and Find Full Text PDF

Background: Gene name recognition and normalization is, together with detection of other named entities, a crucial step in biomedical text mining and the underlying basis for development of more advanced techniques like extraction of complex events. While the current state of the art solutions achieve highly promising results on average, performance can drop significantly for specific genes with highly ambiguous synonyms. Depending on the topic of interest, this can cause the need for extensive manual curation of such text mining results.

View Article and Find Full Text PDF

Background: A multiple sequence alignment (MSA) generated for a protein can be used to characterise residues by means of a statistical analysis of single columns. In addition to the examination of individual positions, the investigation of co-variation of amino acid frequencies offers insights into function and evolution of the protein and residues.

Results: We introduce conn(k), a novel parameter for the characterisation of individual residues.

View Article and Find Full Text PDF