Publications by authors named "Matthew McCallum"

Marburg virus (MARV) is a filovirus that causes a severe and often lethal hemorrhagic fever. Despite the increasing frequency of MARV outbreaks, no vaccines or therapeutics are licensed for use in humans. Here, we designed mutations that improve the expression and thermostability of the prefusion MARV glycoprotein (GP) ectodomain trimer, which is the sole target of neutralizing antibodies and vaccines in development.

View Article and Find Full Text PDF

In the absence of effective vaccines, human-infecting members of the Herpesvirus family cause considerable morbidity and mortality worldwide. Herpesvirus infection relies on receptor engagement by a gH/gL glycoprotein complex which induces large-scale conformational changes of the gB glycoprotein to mediate fusion of the viral and host membranes and infection. The instability of all herpesvirus gBs have hindered biochemical and functional studies, thereby limiting our understanding of the infection mechanisms of these pathogens and preventing vaccine design.

View Article and Find Full Text PDF

Although coronaviruses use diverse receptors, the characterization of coronaviruses with unknown receptors has been impeded by a lack of infection models. Here we introduce a strategy to engineer functional customized viral receptors (CVRs). The modular design relies on building artificial receptor scaffolds comprising various modules and generating specific virus-binding domains.

View Article and Find Full Text PDF

The human coronavirus HKU1 spike (S) glycoprotein engages host cell surface sialoglycans and transmembrane protease serine 2 (TMPRSS2) to initiate infection. The molecular basis of HKU1 binding to TMPRSS2 and determinants of host receptor tropism remain elusive. We designed an active human TMPRSS2 construct enabling high-yield recombinant production in human cells of this key therapeutic target.

View Article and Find Full Text PDF
Article Synopsis
  • The Langya virus (LayV) is a new henipavirus identified in patients in China and uses unique glycoproteins for cell entry that differ from other related viruses like Nipah and Hendra.
  • LayV's F and G glycoproteins do not cross-react with antibodies generated against NiV and HeV, indicating distinct antigenic properties, confirmed through cryoelectron microscopy studies.
  • The findings from this research aid in the design of potential vaccines and treatments for LayV and similar henipaviruses by highlighting the structural differences and stabilizing strategies for their glycoproteins.
View Article and Find Full Text PDF

In the ENSEMBLE randomized, placebo-controlled phase 3 trial (NCT04505722), estimated single-dose Ad26.COV2.S vaccine efficacy (VE) was 56% against moderate to severe-critical COVID-19.

View Article and Find Full Text PDF

The human coronavirus HKU1 spike (S) glycoprotein engages host cell surface sialoglycans and transmembrane protease serine 2 (TMPRSS2) to initiate infection. The molecular basis of HKU1 binding to TMPRSS2 and determinants of host receptor tropism remain elusive. Here, we designed an active human TMPRSS2 construct enabling high-yield recombinant production in human cells of this key therapeutic target.

View Article and Find Full Text PDF

Langya virus (LayV) is a recently discovered henipavirus (HNV), isolated from febrile patients in China. HNV entry into host cells is mediated by the attachment (G) and fusion (F) glycoproteins which are the main targets of neutralizing antibodies. We show here that the LayV F and G glycoproteins promote membrane fusion with human, mouse and hamster target cells using a different, yet unknown, receptor than NiV and HeV and that NiV- and HeV-elicited monoclonal and polyclonal antibodies do not cross-react with LayV F and G.

View Article and Find Full Text PDF

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity, and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month time frame. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals.

View Article and Find Full Text PDF
Article Synopsis
  • Multiple safe and effective COVID-19 vaccines have been developed globally, utilizing different technologies and strategies to enhance their efficacy.! -
  • Vaccines with specific "prefusion-stabilizing S mutations" trigger stronger antibody responses in humans, leading to better recognition and neutralization of the spike protein compared to those without these modifications.! -
  • The study findings suggest a need for improved designs in future S-engineered vaccines to ensure they remain effective against new variants of the virus.!
View Article and Find Full Text PDF

Memory B cells (MBCs) generate rapid antibody responses upon secondary encounter with a pathogen. Here, we investigated the kinetics, avidity and cross-reactivity of serum antibodies and MBCs in 155 SARS-CoV-2 infected and vaccinated individuals over a 16-month timeframe. SARS-CoV-2-specific MBCs and serum antibodies reached steady-state titers with comparable kinetics in infected and vaccinated individuals.

View Article and Find Full Text PDF

The coronavirus spike glycoprotein attaches to host receptors and mediates viral fusion. Using a broad screening approach, we isolated seven monoclonal antibodies (mAbs) that bind to all human-infecting coronavirus spike proteins from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune donors. These mAbs recognize the fusion peptide and acquire affinity and breadth through somatic mutations.

View Article and Find Full Text PDF
Article Synopsis
  • SARS-CoV-2 has developed variants with changes in its spike protein that impact how well it binds to the ACE2 receptor and how antibodies recognize it.
  • Research shows that some mutations, like N501Y, can influence the effects of other mutations, a phenomenon known as epistasis, which plays a role in the virus's evolutionary adaptations.
  • The study provides insights into the relationship between the spike protein's sequence and function, helping us understand the ongoing evolution of SARS-CoV-2.
View Article and Find Full Text PDF

Although infections among vaccinated individuals lead to milder COVID-19 symptoms relative to those in unvaccinated subjects, the specificity and durability of antibody responses elicited by breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum-binding and -neutralizing antibody responses that are markedly more potent, durable, and resilient to spike mutations observed in variants than those in subjects who received only 2 doses of vaccine. However, we show that breakthrough cases, subjects who were vaccinated after infection, and individuals vaccinated three times have serum-neutralizing activity of comparable magnitude and breadth, indicating that an increased number of exposures to SARS-CoV-2 antigen(s) enhance the quality of antibody responses.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant of concern evades antibody-mediated immunity that comes from vaccination or infection with earlier variants due to accumulation of numerous spike mutations. To understand the Omicron antigenic shift, we determined cryo-electron microscopy and x-ray crystal structures of the spike protein and the receptor-binding domain bound to the broadly neutralizing sarbecovirus monoclonal antibody (mAb) S309 (the parent mAb of sotrovimab) and to the human ACE2 receptor. We provide a blueprint for understanding the marked reduction of binding of other therapeutic mAbs that leads to dampened neutralizing activity.

View Article and Find Full Text PDF

The SARS-CoV-2 Delta variant is currently responsible for most infections worldwide, including among fully vaccinated individuals. Although these latter infections are associated with milder COVID-19 disease relative to unvaccinated subjects, the specificity and durability of antibody responses elicited by Delta breakthrough cases remain unknown. Here, we demonstrate that breakthrough infections induce serum binding and neutralizing antibody responses that are markedly more potent, durable and resilient to spike mutations observed in variants of concern than those observed in subjects who were infected only or received only two doses of COVID-19 vaccine.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission leads to the emergence of variants, including the B.1.617.

View Article and Find Full Text PDF
Article Synopsis
  • The ongoing global spread of SARS-CoV-2 has led to new variants like B.1.617.1 (kappa) and B.1.617.2 (delta), which are primarily impacting unvaccinated populations and are becoming dominant strains.
  • These variants have mutations that reduce the effectiveness of antibodies generated by vaccines, complicating immune response and increasing infection rates.
  • Researchers identified new types of monoclonal antibodies that target the N-terminal domain of the virus, which could be key for developing more effective vaccines against various variants.
View Article and Find Full Text PDF
Article Synopsis
  • - The COVID-19 pandemic has caused significant harm globally, affecting families, healthcare, and economies, highlighting the need for effective diagnostics and treatments.
  • - Researchers developed new DNA aptamers that specifically bind to the SARS-CoV-2 spike protein, demonstrating high binding strength and specificity.
  • - The aptamer, named SNAP1, was successfully used in diagnostic tests to detect low levels of inactivated SARS-CoV-2, indicating its potential as a useful tool for diagnosing the virus.
View Article and Find Full Text PDF

SARS-CoV-2 entry is mediated by the spike (S) glycoprotein which contains the receptor-binding domain (RBD) and the N-terminal domain (NTD) as the two main targets of neutralizing antibodies (Abs). A novel variant of concern (VOC) named CAL.20C (B.

View Article and Find Full Text PDF

The SARS-CoV-2 spike (S) glycoprotein contains an immunodominant receptor-binding domain (RBD) targeted by most neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently.

View Article and Find Full Text PDF

SARS-CoV-2 entry into host cells is orchestrated by the spike (S) glycoprotein that contains an immunodominant receptor-binding domain (RBD) targeted by the largest fraction of neutralizing antibodies (Abs) in COVID-19 patient plasma. Little is known about neutralizing Abs binding to epitopes outside the RBD and their contribution to protection. Here, we describe 41 human monoclonal Abs (mAbs) derived from memory B cells, which recognize the SARS-CoV-2 S N-terminal domain (NTD) and show that a subset of them neutralize SARS-CoV-2 ultrapotently.

View Article and Find Full Text PDF

The arms race between bacteria and phages has led to the evolution of diverse anti-phage defenses, several of which are controlled by quorum-sensing pathways. In this work, we characterize a quorum-sensing anti-activator protein, Aqs1, found in Pseudomonas phage DMS3. We show that Aqs1 inhibits LasR, the master regulator of quorum sensing, and present the crystal structure of the Aqs1-LasR complex.

View Article and Find Full Text PDF

The type IV pilus machinery is a multi-protein complex that polymerizes and depolymerizes a pilus fiber used for attachment, twitching motility, phage adsorption, natural competence, protein secretion, and surface-sensing. An outer membrane secretin pore is required for passage of the pilus fiber out of the cell. Herein, the structure of the tetradecameric secretin, PilQ, from the Pseudomonas aeruginosa type IVa pilus system was determined to 4.

View Article and Find Full Text PDF