Publications by authors named "Matthew M Kling"

Wind is the primary dispersal mechanism of most fungal spores but is rarely considered in studies of fungal communities, limiting inference of assembly mechanisms and forecasting responses to climate change. We compiled wind-connectivity models-'windscapes'-to model potential dispersal of fungal spores at the continental scale and linked them with a molecular dataset of North American soil fungi. Our analyses demonstrate that prevailing windflow patterns exhibit a significantly stronger signal on fungal community structure than do geographic distances amongst sites.

View Article and Find Full Text PDF
Article Synopsis
  • Farmers are changing the crops they grow to adapt to new environmental and market conditions, which is called crop switching.
  • This study looks at how often and where crop switching happens in the United States using detailed data from 2008 to 2022.
  • They found that crop switching is more common in diverse and less farmed areas but less common in highly uniform farming regions, showing that farmers’ choices depend on different factors across the country.
View Article and Find Full Text PDF

Stochastic diffusion is the noisy and uncertain process through which dynamics like epidemics, or agents like animal species, disperse over a larger area. Understanding these processes is becoming increasingly important as we attempt to better prepare for potential pandemics and as species ranges shift in response to climate change. Unfortunately, modeling of stochastic diffusion is mostly done through inaccurate deterministic tools that fail to capture the random nature of dispersal or else through expensive computational simulations.

View Article and Find Full Text PDF

Understanding the topographic basis for microclimatic variation remains fundamental to predicting the site level effects of warming air temperatures. Quantifying diurnal fluctuation and seasonal extremes in relation to topography offers insight into the potential relationship between site level conditions and changes in regional climate. The present study investigated an annual understory temperature regime for 50 sites distributed across a topographically diverse area (>12 km2) comprised of mixed evergreen-deciduous woodland vegetation typical of California coastal ranges.

View Article and Find Full Text PDF

It has been proposed that climate adaptation research can benefit from an evolutionary approach. But related empirical research is lacking. We advance the evolutionary study of climate adaptation with two case studies from contemporary United States agriculture.

View Article and Find Full Text PDF

Wind disperses the pollen and seeds of many plants, but little is known about whether and how it shapes large-scale landscape genetic patterns. We address this question by a synthesis and reanalysis of genetic data from more than 1,900 populations of 97 tree and shrub species around the world, using a newly developed framework for modeling long-term landscape connectivity by wind currents. We show that wind shapes three independent aspects of landscape genetics in plants with wind pollination or seed dispersal: populations linked by stronger winds are more genetically similar, populations linked by directionally imbalanced winds exhibit asymmetric gene flow ratios, and downwind populations have higher genetic diversity.

View Article and Find Full Text PDF

Quantitative knowledge of xylem physical tolerance limits to dehydration is essential to understanding plant drought tolerance but is lacking in many long-vessel angiosperms. We examine the hypothesis that a fundamental association between sustained xylem water transport and downstream tissue function should select for xylem that avoids embolism in long-vessel trees by quantifying xylem capacity to withstand air entry of western North American oaks ( spp.).

View Article and Find Full Text PDF

Observed ecological responses to climate change are highly individualistic across species and locations, and understanding the drivers of this variability is essential for management and conservation efforts. While it is clear that differences in exposure, sensitivity, and adaptive capacity all contribute to heterogeneity in climate change vulnerability, predicting these features at macroecological scales remains a critical challenge. We explore multiple drivers of heterogeneous vulnerability across the distributions of 96 vegetation types of the ecologically diverse western US, using data on observed climate trends from 1948 to 2014 to highlight emerging patterns of change.

View Article and Find Full Text PDF

The impacts of climate change have re-energized interest in understanding the role of climate in setting species geographic range edges. Despite the strong focus on species' distributions in ecology and evolution, defining a species range edge is theoretically and empirically difficult. The challenge of determining a range edge and its relationship to climate is in part driven by the nested nature of geography and the multidimensionality of climate, which together generate complex patterns of both climate and biotic distributions across landscapes.

View Article and Find Full Text PDF

Premise Of The Study: Herbarium specimens are increasingly used as records of plant flowering phenology. However, most herbarium-based studies on plant phenology focus on taxa from temperate regions. Here, we explore flowering phenologic responses to climate in the subtropical plant genus (Proteaceae), an iconic group of plants that flower year-round and are endemic to subtropical Africa.

View Article and Find Full Text PDF

Biodiversity is often described as having multiple facets, including species richness, functional diversity and phylogenetic diversity. In this paper, we argue that phylogenetic diversity itself has three distinct facets-lineage diversification, character divergence and survival time-that can be quantified using distinct branch length metrics on an evolutionary tree. Each dimension is related to different processes of macroevolution, has different spatial patterns and is tied to distinct goals for conserving biodiversity and protecting its future resilience and evolutionary potential.

View Article and Find Full Text PDF

Background: California is a world floristic biodiversity hotspot where the terms neo- and paleo-endemism were first applied. Using spatial phylogenetics, it is now possible to evaluate biodiversity from an evolutionary standpoint, including discovering significant areas of neo- and paleo-endemism, by combining spatial information from museum collections and DNA-based phylogenies. Here we used a distributional dataset of 1.

View Article and Find Full Text PDF

Premise Of The Study: California's vascular flora is the most diverse and threatened in temperate North America. Previous studies of spatial patterns of Californian plant diversity have been limited by traditional metrics, non-uniform geographic units, and distributional data derived from floristic descriptions for only a subset of species.

Methods: We revisited patterns of sampling intensity, species richness, and relative endemism in California based on equal-area spatial units, the full vascular flora, and specimen-based distributional data.

View Article and Find Full Text PDF