The fundamental repeat unit of chromatin, the nucleosome, consists of approximately 147 base pairs of double-stranded DNA and a histone protein octamer containing two copies each of histones H2A, H2B, H3, and H4. Each histone possesses a dynamically disordered N-terminal tail domain, and it is well-established that the tails of histones H3 and H4 play key roles in chromatin compaction and regulation. Here we investigate the conformational ensemble and interactions of the H4 tail in nucleosomes by means of solution NMR measurements of paramagnetic relaxation enhancements (PREs) in recombinant samples reconstituted with N-enriched H4 and nitroxide spin-label tagged H3.
View Article and Find Full Text PDFThe majority of base pairs in double-stranded DNA exist in the canonical Watson-Crick geometry. However, they can also adopt alternate Hoogsteen conformations in various complexes of DNA with proteins and small molecules, which are key for biological function and mechanism. While detection of Hoogsteen base pairs in large DNA complexes and assemblies poses considerable challenges for traditional structural biology techniques, we show here that multidimensional dynamic nuclear polarization-enhanced solid-state NMR can serve as a unique spectroscopic tool for observing and distinguishing Watson-Crick and Hoogsteen base pairs in a broad range of DNA systems based on characteristic NMR chemical shifts and internuclear dipolar couplings.
View Article and Find Full Text PDFChromatin is a supramolecular DNA-protein complex that compacts eukaryotic genomes and regulates their accessibility and functions. Dynamically disordered histone H3 N-terminal tails are among key chromatin regulatory components. Here, we used high-resolution-magic-angle-spinning NMR measurements of backbone amide N spin relaxation rates to investigate, with residue-specific detail, the dynamics and interactions of H3 tails in recombinant C,N-enriched nucleosome arrays containing 15, 30, or 60 bp linker DNA between the nucleosome repeats.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2021
The interaction of positively charged N-terminal histone tails with nucleosomal DNA plays an important role in chromatin assembly and regulation, modulating their susceptibility to post-translational modifications and recognition by chromatin-binding proteins. Here, we report residue-specific N NMR relaxation rates for histone H4 tails in reconstituted nucleosomes. These data indicate that H4 tails are strongly dynamically disordered, albeit with reduced conformational flexibility compared to a free peptide with the same sequence.
View Article and Find Full Text PDFMicrosecond to millisecond timescale backbone dynamics of the amyloid core residues in Y145Stop human prion protein (PrP) fibrils were investigated by using N rotating frame (R ) relaxation dispersion solid-state nuclear magnetic resonance spectroscopy over a wide range of spin-lock fields. Numerical simulations enabled the experimental relaxation dispersion profiles for most of the fibril core residues to be modelled by using a two-state exchange process with a common exchange rate of 1000 s , corresponding to protein backbone motion on the timescale of 1 ms, and an excited-state population of 2 %. We also found that the relaxation dispersion profiles for several amino acids positioned near the edges of the most structured regions of the amyloid core were better modelled by assuming somewhat higher excited-state populations (∼5-15 %) and faster exchange rate constants, corresponding to protein backbone motions on the timescale of ∼100-300 μs.
View Article and Find Full Text PDFWe demonstrate rapid quantitative measurements of site-resolved paramagnetic relaxation enhancements (PREs), which are a source of valuable structural restraints corresponding to electron-nucleus distances in the ∼10-20 Å regime, in solid-state nuclear magnetic resonance (NMR) spectra of proteins containing covalent Cu-binding tags. Specifically, using protein GB1 K28C-EDTA-Cu mutant as a model, we show the determination of backbone amide N longitudinal and H transverse PREs within a few hours of experiment time based on proton-detected 2D or 3D correlation spectra recorded with magic-angle spinning frequencies ≥ ∼ 60 kHz for samples containing ∼10-50 nanomoles of H,C,N-labeled protein back-exchanged in HO. Additionally, we show that the electron relaxation time for the Cu center, needed to convert PREs into distances, can be estimated directly from the experimental data.
View Article and Find Full Text PDFDouble electron electron resonance (DEER) is an attractive technique that is utilized for gaining insight into protein structure and dynamics via nanometer-scale distance measurements. The most commonly used paramagnetic tag in these measurements is a nitroxide spin label, R1. Here, we present the application of two types of high-affinity Cu(2+) chelating tags, based on the EDTA and cyclen metal-binding motifs as alternative X-band DEER probes, using the B1 immunoglobulin-binding domain of protein G (GB1) as a model system.
View Article and Find Full Text PDF