Publications by authors named "Matthew A W Chisnall"

Bacteria evolve resistance against their phage foes with a wide range of resistance strategies whose costs and benefits depend on the level of protection they confer and on the costs for maintainance. can evolve resistance against its phage DMS either by surface mutations that prevent phage binding or through CRISPR-Cas immunity. CRISPR immunity carries an inducible cost whose exact origin is still unknown, and previous work suggested it stems from the inability of the CRISPR-Cas system to completely prevent phage DNA injection and subsequent gene expression before clearing the phage infection.

View Article and Find Full Text PDF
Article Synopsis
  • Bacteria have developed a variety of defensive mechanisms to combat their parasites, resulting in diverse strategies for survival against threats like phages.
  • The newly identified methylation-associated defense system (MADS) appears in various bacterial species and works alongside CRISPR-Cas systems to enhance resistance to viral infections.
  • MADS consists of eight essential genes that equip bacteria to distinguish between self and non-self DNA, providing a sophisticated method for recognizing and responding to infections effectively.
View Article and Find Full Text PDF

Widespread antibiotic resistance in commensal bacteria creates a persistent challenge for human health. Resident drug-resistant microbes can prevent clinical interventions, colonize wounds post-surgery, pass resistance traits to pathogens or move to more harmful niches following routine interventions such as catheterization. Accelerating the removal of resistant bacteria or actively decolonizing particular lineages from hosts could therefore have a number of long-term benefits.

View Article and Find Full Text PDF

Quorum sensing controls the expression of a wide range of important traits in the opportunistic pathogen Pseudomonas aeruginosa, including the expression of virulence genes and its CRISPR-cas immune system, which protects from bacteriophage (phage) infection. This finding has led to the speculation that synthetic quorum sensing inhibitors could be used to limit the evolution of CRISPR immunity during phage therapy. Here we use experimental evolution to explore if and how a quorum sensing inhibitor influences the population and evolutionary dynamics of P.

View Article and Find Full Text PDF

Small open reading frames (sORFs) are an often overlooked feature of plant genomes. Initially found in plant viral RNAs and considered an interesting curiosity, an increasing number of these sORFs have been shown to encode functional peptides or play a regulatory role. The recent discovery that many of these sORFs initiate with start codons other than AUG, together with the identification of functional small peptides encoded in supposedly noncoding primary miRNA transcripts (pri-miRs), has drastically increased the number of potentially functional sORFs within the genome.

View Article and Find Full Text PDF