Publications by authors named "Matthew A Hyde"

Although virus-like particle (VLP) vaccines were shown to be effective against several viruses, their advantage over vaccines that include envelope protein only is not completely clear, particularly for mRNA-encoded VLPs. We conducted a side-by-side comparison of the immunogenicity and protective efficacy of mRNA vaccines encoding the Marburg virus (MARV) full-length glycoprotein (GP) delivered alone or as a VLP. Electron microscopy confirmed VLP formation when MARV GP and matrix protein VP40 were coexpressed.

View Article and Find Full Text PDF

The first-ever recent Marburg virus (MARV) outbreak in Tanzania and recent emergences in Rwanda, Ghana and Equatorial Guinea underscore the importance of therapeutic or vaccine development against the virus, for which none are approved. mRNA vaccines were proven successful in a pandemic-response to severe acute respiratory syndrome coronavirus-2, making it an appealing platform to target pathogenic emerging viruses. Here, we develop 1-methyl-pseudouridine-modified mRNA vaccines formulated in lipid nanoparticles (LNP) targeting the glycoproteins (GP) of MARV and the closely-related Ravn virus (RAVV).

View Article and Find Full Text PDF

Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system remains unclear.

View Article and Find Full Text PDF

Intranasal vaccination represents a promising approach for preventing disease caused by respiratory pathogens by eliciting a mucosal immune response in the respiratory tract that may act as an early barrier to infection and transmission. This study investigated immunogenicity and protective efficacy of intranasally administered messenger RNA (mRNA)-lipid nanoparticle (LNP) encapsulated vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Syrian golden hamsters. Intranasal mRNA-LNP vaccination systemically induced spike-specific binding [immunoglobulin G (IgG) and IgA] and neutralizing antibodies.

View Article and Find Full Text PDF

A new vectored vaccine MVA-VLP-SUDV was generated against Sudan ebolavirus (SUDV) combining the advantages of the immunogenicity of a live attenuated vaccine vector (Modified Vaccinia Ankara, MVA) with the authentic conformation of virus-like particles (VLPs). The vaccine expresses minimal components to generate self-assembling VLPs in the vaccinee: the envelope glycoprotein GP and the matrix protein VP40. Guinea pigs vaccinated with one dose of MVA-VLP-SUDV generated SUDV-specific binding and neutralizing antibody responses as well as Fc-mediated protective effects.

View Article and Find Full Text PDF

The development of effective countermeasures against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the agent responsible for the COVID-19 pandemic, is a priority. We designed and produced ConVac, a replication-competent vesicular stomatitis virus (VSV) vaccine vector that expresses the S1 subunit of SARS-CoV-2 spike protein. We used golden Syrian hamsters as animal models of severe COVID-19 to test the efficacy of the ConVac vaccine.

View Article and Find Full Text PDF

New World hantaviruses (NWHs) are endemic in North and South America and cause hantavirus cardiopulmonary syndrome (HCPS), with a case fatality rate of up to 40%. Knowledge of the natural humoral immune response to NWH infection is limited. Here, we describe human monoclonal antibodies (mAbs) isolated from individuals previously infected with Sin Nombre virus (SNV) or Andes virus (ANDV).

View Article and Find Full Text PDF