Publications by authors named "Matilde Bertolini"

Protein complexes are pivotal to most cellular processes. Emerging evidence indicating dimer assembly by pairs of ribosomes suggests yet unknown folding mechanisms involving two nascent chains. Here, we show that co-translational ribosome pairing allows their nascent chains to 'chaperone each other', thus enabling the formation of coiled-coil homodimers from subunits that misfold individually.

View Article and Find Full Text PDF

Traditional methods for identifying selective protease substrates have primarily relied on synthetic libraries of linear peptides, which offer limited sequence and structural diversity. Here, we present an approach that leverages phage display technology to screen large libraries of chemically modified cyclic peptides, enabling the identification of highly selective substrates for a protease of interest. Our method uses a reactive chemical linker to cyclize peptides on the phage surface, while simultaneously incorporating an affinity tag and a fluorescent reporter.

View Article and Find Full Text PDF

Traditional methods for identifying selective protease substrates have primarily relied on synthetic libraries of linear peptides, which offer limited sequence and structural diversity. Here, we present an approach that leverages phage display technology to screen large libraries of chemically modified cyclic peptides, enabling the identification of highly selective substrates for a protease of interest. Our method uses a reactive chemical linker to cyclize peptides on the phage surface, while simultaneously incorporating an affinity tag and a fluorescent reporter.

View Article and Find Full Text PDF

Peptide macrocycles are promising therapeutics for a variety of disease indications due to their overall metabolic stability and potential to make highly selective binding interactions with targets. Recent advances in covalent macrocycle peptide discovery, driven by phage and mRNA display methods, have enabled the rapid identification of highly potent and selective molecules from large libraires of diverse macrocycles. However, there are currently limited examples of macrocycles that can be used to disrupt protein-protein interactions and even fewer examples that function by formation of a covalent bond to a target protein.

View Article and Find Full Text PDF
Article Synopsis
  • * The study introduces a novel counter-selection method using phage display to identify covalent macrocyclic ligands that can disrupt protein-protein interactions, specifically targeting the SARS-CoV-2 Spike-ACE2 interaction.
  • * The identified covalent inhibitors showed strong antiviral effects, demonstrating their permanence due to the covalent binding mechanism, highlighting the potential for developing long-lasting drugs that interfere with critical protein interactions.
View Article and Find Full Text PDF

Stem cells show intrinsic interferon signalling, which protects them from viral infections at all ages. In the ageing brain, interferon signalling also reduces the ability of stem cells to activate. Whether these functions are linked and at what time interferons start taking on a role in stem cell functioning is unknown.

View Article and Find Full Text PDF

Accurate assembly of newly synthesized proteins into functional oligomers is crucial for cell activity. In this study, we investigated whether direct interaction of two nascent proteins, emerging from nearby ribosomes (co-co assembly), constitutes a general mechanism for oligomer formation. We used proteome-wide screening to detect nascent chain-connected ribosome pairs and identified hundreds of homomer subunits that co-co assemble in human cells.

View Article and Find Full Text PDF