Thanks to significant advances in genomics and bioinformatics, research on plant sex-determining genes has made remarkable progress over the past decade. Since the discovery of the OGI-MeGI sex-determination system in persimmons in 2014, candidate sex-determining genes have been identified in a dozen flowering plant species. In this review, we examine these newly discovered genes and explore what they reveal about the genetic basis of dioecy evolution.
View Article and Find Full Text PDFCompetition for mate acquisition is the hallmark of any sexual organism. In insect-pollinated plants, competition to attract pollinators is expected to result in pollinator-mediated selection on attractive floral traits. This could overlap with sexual selection if the number of mating partners increases with pollinator attraction, resulting in an improved reproductive success.
View Article and Find Full Text PDFiScience
April 2023
Species diversity can vary dramatically across lineages due to differences in speciation and extinction rates. Here, we explore the effects of several plant traits on diversification, finding that most traits have opposing effects on diversification. For example, outcrossing may increase the efficacy of selection and adaptation but also decrease mate availability, two processes with contrasting effects on lineage persistence.
View Article and Find Full Text PDFIn animal-pollinated angiosperms, the 'male-function' hypothesis claims that male reproductive success (RS) should benefit from large floral displays, through pollinator attraction, while female RS is expected to be mainly limited by resource availability. As appealing as this theory might be, studies comparing selection strength on flower number in both sexes rarely document the expected asymmetry. This discrepancy could arise because flower number impacts both pollinator attraction and overall gamete number.
View Article and Find Full Text PDFConcentration of air pollutants, particularly ozone (O), has dramatically increased since pre-industrial times in the troposphere. Due to the strong oxidative potential of O, negative effects on both emission and lifetime in the atmosphere of plant volatile organic compounds (VOCs) have already been highlighted. VOCs alteration by O may potentially affect the attraction of pollinators that rely on these chemical signals.
View Article and Find Full Text PDFSexual selection is known to shape plant traits that affect access to mates during the pollination phase, but it is less well understood to what extent it affects traits relevant to interactions between pollen and pistils after pollination. This is surprising, because both of the two key modes of sexual selection, male-male competition and female choice, could plausibly operate during pollen-pistil interactions where physical male-female contact occurs. Here, we consider how the key processes of sexual selection might affect traits involved in pollen-pistil interactions, including 'Fisherian runaway' and 'good-genes' models.
View Article and Find Full Text PDFHow flowering plants have recurrently evolved from hermaphroditism to separate sexes (dioecy) is a central question in evolutionary biology. Here, we investigate whether diallelic self-incompatibility (DSI) is associated with sexual specialization in the polygamous common ash (), which would ultimately facilitate the evolution towards dioecy. Using interspecific crosses, we provide evidence of strong relationships between the DSI system and sexual phenotype.
View Article and Find Full Text PDFBackground And Aims: Among the various floral traits involved in pollinator attraction and potentially under selection mediated by pollinators, floral scent/fragrance has been less investigated than other components of floral phenotype. Whether or not pollinator-mediated selection impacts floral scents depends on the heritability of scent/fragrance and the occurrence of some variation within species. Although most studies have investigated how scent varies among species, growing amounts of data are available on variation at the intraspecific level.
View Article and Find Full Text PDFReproductive isolation can rise either as a consequence of genomic divergence in allopatry or as a byproduct of divergent selection in parapatry. To determine whether reproductive isolation in gynodioecious Silene nutans results from allopatric divergence or from ecological adaptation following secondary contact, we investigated the pattern of postzygotic reproductive isolation and hybridization in natural populations using two phylogeographic lineages, western (W1) and eastern (E1). Experimental crosses between the lineages identified strong, asymmetric postzygotic isolation between the W1 and the E1 lineages, independent of geographic overlap.
View Article and Find Full Text PDFIn gynodioecious plant species with nuclear-cytoplasmic sex determination, females and hermaphrodites plants can coexist whenever female have higher seed fitness than hermaphrodites. Although the effect of self fertilization on seed fitness in hermaphrodites has been considered theoretically, this effect is far from intuitive, because it can either increase the relative seed fitness of the females (if it leads hermaphrodites to produce inbred, low quality offspring) or decrease it (if it provides reproductive assurance to hermaphrodites). Hence, empirical investigation is needed to document whether relative seed fitness varies with whether pollen is or is not limiting to seed production.
View Article and Find Full Text PDFThe mode of pollination is often neglected regarding the evolution of selfing. Yet the distribution of mating systems seems to depend on the mode of pollination, and pollinators are likely to interfere with selfing evolution, since they can cause strong selective pressures on floral traits. Most selfing species reduce their investment in reproduction, and display smaller flowers, with less nectar and scents (referred to as selfing syndrome).
View Article and Find Full Text PDFGynodioecy, the co-occurrence of females and hermaphrodites, is often due to conflicting interactions between cytoplasmic male sterility genes and nuclear restorers. Although gynodioecy often occurs in self-compatible species, the effect of self-pollination, inbreeding depression, and pollen limitation acting differently on females and hermaphrodites remains poorly known in the case of nuclear-cytoplasmic gynodioecy (NCG). In this study, we model NCG in an infinite population and we study the effect of selfing rate, inbreeding depression, and pollen limitation on the maintenance of gynodioecy and on sex ratios at equilibrium.
View Article and Find Full Text PDFBackground: Gynodioecy is a reproductive system of interest for evolutionary biologists, as it poses the question of how females can be maintained while competing with hermaphrodites that possess both male and female functions. One necessary condition for the maintenance of this polymorphism is the occurrence of a female advantage, i.e.
View Article and Find Full Text PDFPlant mating systems are known to influence population genetic structure because pollen and seed dispersal are often spatially restricted. However, the reciprocal outcomes of population structure on the dynamics of polymorphic mating systems have received little attention. In gynodioecious sea beet (Beta vulgaris ssp.
View Article and Find Full Text PDFGynodioecy, where females co-occur with hermaphrodites, is a relatively common sexual system in plants that is often the result of a genetic conflict between maternally inherited male sterility genes in the mitochondrial genome and the biparentally inherited male fertility restorer genes in the nucleus. Previous models have shown that nuclear-cytoplasmic gynodioecy can be maintained under certain conditions by negative frequency-dependent selection, but the effect of other evolutionary processes such as genetic drift and population subdivision is only partially understood. Here, we investigate the joint effects of frequency-dependent selection, drift, and migration through either pollen or seeds on the maintenance of nuclear-cytoplasmic gynodioecy in a subdivided population.
View Article and Find Full Text PDFThis study is devoted to assess sex ratio variation among 33 populations of the gynodioecious Beta vulgaris ssp. maritima in Brittany (France) and to explore the causes of this variation. We showed that three different CMS (cytoplasmic male sterility) cytotypes occurred in populations, but strongly differed for their frequencies and the frequency of their associated nuclear restorer alleles (which counteract the effect of CMS and restore male fertility).
View Article and Find Full Text PDFInformation on intra-specific variation in pollinator-attracting floral traits provides clues to selective pressures imposed by pollinators. However, these traits also reflect constraints related to floral phenology or morphology. The specific weevil pollinator Derelomus chamaeropsis of the dioecious Mediterranean dwarf palm Chamaerops humilis is attracted by volatile compounds that leaves, and not flowers, release during anthesis.
View Article and Find Full Text PDF