Transl Psychiatry
September 2024
Chronic stress constitutes a major risk factor for depression that can disrupt various aspects of homeostasis, including the gut microbiome (GM). We have recently shown that GM imbalance affects adult hippocampal (HPC) neurogenesis and induces depression-like behaviors, with the exact mechanisms being under active investigation. Here we hypothesized that the vagus nerve (VN), a key bidirectional route of communication between the gut and the brain, could relay the effects of stress-induced GM changes on HPC plasticity and behavior.
View Article and Find Full Text PDFBipolar disorders are defined by recurrences of depressive and manic episodes. The pathophysiology is still unknown, and translating clinical symptoms into behaviors explorable in animal models is challenging. Animal models of bipolar disorder do not exist because cyclicity of the disease is impossible to mimic, and it is therefore necessary to study mania and depression models separately.
View Article and Find Full Text PDFNeurosci Biobehav Rev
November 2020
Because of our classification system limitations for defining psychiatric disorders and understanding their physiopathology, a new research area based on dimensions has emerged. It consists of exploring domains derived from fundamental behavioral components linked to neurobiological systems. Emotional processing is among the most affected dimensions in bipolar disorders (BD), but is excluded from the definition criteria.
View Article and Find Full Text PDFMajor depressive disorders (MDDs) constitute a leading cause of disability worldwide and current pharmacological treatments are partially effective. The gut microbiota (GM) has recently emerged as a target of therapeutic interest for MDDs. In this study, we transfer GM from mice that sustained unpredictable chronic mild stress (UCMS) to healthy recipient mice.
View Article and Find Full Text PDFBackground: Olfactory deficits (OD) are reported as markers for a large spectrum of neuro-psychiatric disorders. Alterations can concern perception, identification, discrimination and assignment of odour's valence of olfaction process. We propose a comprehensive review to summarize which kind of OD were reported in bipolar disorders (BD) and in which phase of the disease, to know if they could be a marker of state or trait.
View Article and Find Full Text PDFIn the neocortex, synaptic inhibition shapes all forms of spontaneous and sensory evoked activity. Importantly, inhibitory transmission is highly plastic, but the functional role of inhibitory synaptic plasticity is unknown. In the mouse barrel cortex, activation of layer (L) 2/3 pyramidal neurons (PNs) elicits strong feedforward inhibition (FFI) onto L5 PNs.
View Article and Find Full Text PDFSeveral biological processes are involved in dementia, and fibrillar aggregation of misshaped endogenous proteins appears to be an early hallmark of neurodegenerative disease. A recently developed means of studying neurodegenerative diseases is magnetic resonance elastography (MRE), an imaging technique investigating the mechanical properties of tissues. Although mechanical changes associated with these diseases have been detected, the specific signal of fibrils has not yet been isolated in clinical or preclinical studies.
View Article and Find Full Text PDFMagnetic resonance elastography (MRE) is a non-invasive imaging technique, using the propagation of mechanical waves as a probe to palpate biological tissues. It consists in three main steps: production of shear waves within the tissue; encoding subsequent tissue displacement in magnetic resonance images; and extraction of mechanical parameters based on dedicated reconstruction methods. These three steps require an acoustic-frequency mechanical actuator, magnetic resonance imaging acquisition, and a post-processing tool for which no turnkey technology is available.
View Article and Find Full Text PDFThe serotonin 5-HT and glutamate mGlu receptors continue to attract particular attention, given their implication in psychosis associated with schizophrenia and the mechanism of action of atypical antipsychotics and a new class of antipsychotics, respectively. A large body of evidence indicates a functional crosstalk between both receptors in the brain, but the underlying mechanisms are not entirely elucidated. Here, we have explored the influence of 5-HT receptor upon the phosphorylation pattern of mGlu receptor in light of the importance of specific phosphorylation events in regulating G protein-coupled receptor signaling and physiological outcomes.
View Article and Find Full Text PDF