Publications by authors named "Massimo Mangino"

Polygenic scores (PGSs) for body mass index (BMI) may guide early prevention and targeted treatment of obesity. Using genetic data from up to 5.1 million people (4.

View Article and Find Full Text PDF

More than a half of plasma proteins are N-glycosylated. Most of them are synthesized, glycosylated, and secreted to the bloodstream by liver and lymphoid tissues. While associations with N-glycosylation are implicated in the rising number of liver, cardiometabolic, and immune diseases, little is known about the genetic regulation of this process.

View Article and Find Full Text PDF

Introduction: Genetic factors contribute to weight gain, but how these effects change over adulthood is still unknown. We studied the impact of genetics on BMI change from young adulthood to old age and its relationship with BMI in early young adulthood.

Data And Methods: Data from 16 longitudinal twin cohorts, including 111,370 adults (56% women) and 55,657 complete twin pairs (42% monozygotic), were pooled.

View Article and Find Full Text PDF

Infections can lead to persistent symptoms and diseases such as shingles after varicella zoster or rheumatic fever after streptococcal infections. Similarly, severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) infection can result in long coronavirus disease (COVID), typically manifesting as fatigue, pulmonary symptoms and cognitive dysfunction. The biological mechanisms behind long COVID remain unclear.

View Article and Find Full Text PDF

Osteoarthritis is the third most rapidly growing health condition associated with disability, after dementia and diabetes. By 2050, the total number of patients with osteoarthritis is estimated to reach 1 billion worldwide. As no disease-modifying treatments exist for osteoarthritis, a better understanding of disease aetiopathology is urgently needed.

View Article and Find Full Text PDF

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discovered 22 novel gene-sleep duration interaction loci for blood pressure, mapped to 23 genes.

View Article and Find Full Text PDF
Article Synopsis
  • * We found 17 genetic loci associated with sleep duration impacting lipid levels, with 10 of them being newly identified and linked to sleep-related disturbances in lipid metabolism.
  • * The research points to potential drug targets that could lead to new treatments for lipid-related issues in individuals with sleep problems, highlighting the connection between sleep patterns and cardiovascular health.
View Article and Find Full Text PDF
Article Synopsis
  • Genetic studies have highlighted the need for more diverse research on plasma fibrinogen levels, as previous studies largely focused on Europeans, leading to gaps in understanding and missing heritability.
  • By analyzing data from whole-genome sequencing and genotype data from large cohorts, researchers identified 18 genetic loci related to fibrinogen levels, some of which are more common in African populations and include variants that may impact protein function.
  • The study's findings indicate a connection between fibrinogen levels and various health conditions, emphasizing the importance of whole-genome sequencing in discovering genetic factors in diverse populations and enhancing knowledge about fibrinogen regulation.
View Article and Find Full Text PDF

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to 23 genes.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists looked at the timing of when girls start their periods (called menarche) and how it can affect their health later in life.
  • They studied about 800,000 women and found over a thousand genetic signals that influence when menstruation starts.
  • Some women have a much higher chance of starting their periods too early or too late based on their genetic makeup, suggesting that genes play a big role in this process!
View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) susceptibility is influenced by genetic and environmental factors. Previous findings suggest DNA methylation as a potential mechanism in T2D pathogenesis and progression.

Methods: We profiled DNA methylation in 248 blood samples from participants of European ancestry from 7 twin cohorts using a methylation sequencing platform targeting regulatory genomic regions encompassing 2,048,698 CpG sites.

View Article and Find Full Text PDF

Although both short and long sleep duration are associated with elevated hypertension risk, our understanding of their interplay with biological pathways governing blood pressure remains limited. To address this, we carried out genome-wide cross-population gene-by-short-sleep and long-sleep duration interaction analyses for three blood pressure traits (systolic, diastolic, and pulse pressure) in 811,405 individuals from diverse population groups. We discover 22 novel gene-sleep duration interaction loci for blood pressure, mapped to genes involved in neurological, thyroidal, bone metabolism, and hematopoietic pathways.

View Article and Find Full Text PDF
Article Synopsis
  • - This study conducted a genome-wide association analysis on metabolic traits in over 136,000 participants, revealing over 400 genetic loci that influence human metabolism and complex diseases.
  • - Researchers used advanced techniques like nuclear magnetic resonance spectroscopy to link specific genetic variants with how they affect lipoprotein metabolism and other metabolic processes.
  • - The findings highlight the genetic connections between metabolism and conditions such as hypertension, providing valuable data for further research on metabolic-related diseases.
View Article and Find Full Text PDF

Glycans are an essential structural component of immunoglobulin G (IgG) that modulate its structure and function. However, regulatory mechanisms behind this complex posttranslational modification are not well known. Previous genome-wide association studies (GWAS) identified 29 genomic regions involved in regulation of IgG glycosylation, but only a few were functionally validated.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers conducted a study to identify genetic factors influencing the likelihood of women giving birth to spontaneous dizygotic (DZ) twins, uncovering four new loci: GNRH1, FSHR, ZFPM1, and IPO8, alongside previously known loci FSHB and SMAD3.
  • * The study involved a large genome-wide association meta-analysis (GWAMA) of over 700,000 participants, focusing on mothers of spontaneous DZ twins and their offspring, excluding cases from assisted reproductive technologies (ARTs).
  • * Findings indicate that the newly identified loci play roles in female reproduction, and significant correlations were found with various reproductive traits and body size, suggesting evolutionary pressures against DZ twinning in humans.
View Article and Find Full Text PDF

High-dimensional flow cytometry is the gold standard to study the human immune system in large cohorts. However, large sample sizes increase inter-experimental variation because of technical and experimental inaccuracies introduced by batch variability. Our high-throughput sample processing pipeline in combination with 28-color flow cytometry focuses on increased throughput (192 samples/experiment) and high reproducibility.

View Article and Find Full Text PDF

Background: B vitamins such as folate (B9), B6, and B12 are key in one carbon metabolism, which generates methyl donors for DNA methylation. Several studies have linked differential methylation to self-reported intakes of folate and B12, but these estimates can be imprecise, while metabolomic biomarkers can offer an objective assessment of dietary intakes. We explored blood metabolomic biomarkers of folate and vitamins B6 and B12, to carry out epigenome-wide analyses across up to three European cohorts.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFA) are involved in immune system and inflammatory responses. We comprehensively assessed the host genetic and gut microbial contribution to a panel of eight serum and stool SCFAs in two cohorts (TwinsUK,  = 2507; ZOE PREDICT-1,  = 328), examined their postprandial changes and explored their links with chronic and acute inflammatory responses in healthy individuals and trauma patients. We report low concordance between circulating and fecal SCFAs, significant postprandial changes in most circulating SCFAs, and a heritable genetic component (average : serum = 14%(SD = 14%); stool = 12%(SD = 6%)).

View Article and Find Full Text PDF

Pubertal timing varies considerably and has been associated with a range of health outcomes in later life. To elucidate the underlying biological mechanisms, we performed multi-ancestry genetic analyses in ~800,000 women, identifying 1,080 independent signals associated with age at menarche. Collectively these loci explained 11% of the trait variance in an independent sample, with women at the top and bottom 1% of polygenic risk exhibiting a ~11 and ~14-fold higher risk of delayed and precocious pubertal development, respectively.

View Article and Find Full Text PDF

Metabolome reflects the interplay of genome and exposome at molecular level and thus can provide deep insights into the pathogenesis of a complex disease like major depression. To identify metabolites associated with depression we performed a metabolome-wide association analysis in 13,596 participants from five European population-based cohorts characterized for depression, and circulating metabolites using ultra high-performance liquid chromatography/tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. We tested 806 metabolites covering a wide range of biochemical processes including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and vitamin metabolism for their association with depression.

View Article and Find Full Text PDF

Background: A dysregulated postprandial metabolic response is a risk factor for chronic diseases, including type 2 diabetes mellitus (T2DM). The plasma protein N-glycome is implicated in both lipid metabolism and T2DM risk. Hence, we first investigate the relationship between the N-glycome and postprandial metabolism and then explore the mediatory role of the plasma N-glycome in the relationship between postprandial lipaemia and T2DM.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic studies on plasma fibrinogen levels primarily focused on Europeans, revealing numerous associated regions, but there are gaps in understanding due to missing heritability and representation of non-Europeans.
  • The researchers utilized whole genome sequencing (WGS) and array-based genotyping data from large cohorts to identify 18 new genetic loci linked to fibrinogen levels, with some variants more common in African populations.
  • The study highlights the importance of WGS in discovering genetic variations across diverse populations, linking fibrinogen polygenic risk scores to increased risk for thrombotic and inflammatory diseases like gout.
View Article and Find Full Text PDF